Eenheidsbol

Uit Wikipedia, de vrije encyclopedie
Ga naar: navigatie, zoeken
enige eenheidsbollen

In de wiskunde is een eenheidsbol of de eenheidssfeer de verzameling van punten op afstand 1 vanaf een vast centraal punt. Een eenheidsbal of gesloten eenheidsbol is de verzameling van punten op een afstand kleiner dan of gelijk aan 1 vanaf dit vaste centrale punt. Meestal is er een specifiek punt aangewezen als de oorsprong van de te bestuderen ruimte en wordt ervan uitgegaan dat de eenheidsbol gecentreerd is rondom dit punt.

Het belang van de eenheidsbol is dat elke bol kan worden getransformeerd tot een eenheidsbol door een combinatie van translatie en verschalen. (Op dezelfde wijze kan elke bal tot de eenheidsbal getransformeerd worden.) Op deze manier kunnen de eigenschappen van bollen in het algemeen worden teruggebracht tot de studie van de eenheidsbol.

Soms bedoelt men met eenheidssfeer de eenheidsbol in een drie-dimensionale ruimte in het bijzonder. De eenheidsbol en -bal in twee dimensies noemt men de eenheidscirkel en eenheidsschijf.

Eenheidsbollen in de Euclidische ruimte[bewerken]

In een Euclidische ruimte van n dimensies is de eenheidsbol de verzameling van alle punten

x_1, \cdots, x_n

die voldoen aan de vergelijking

 x_1^2 + x_2^2 + \cdots + x_n ^2 = 1

en de gesloten eenheidsbal is een verzameling van alle punten die voldoen aan de ongelijkheid

 x_1^2 + x_2^2 + \cdots + x_n ^2 \le 1.

Algemene formules voor oppervlakte en inhoud[bewerken]

De inhoud en de oppervlakte van de eenheidsbol in een n-dimensionale Euclidische ruimte komen in vele belangrijke formules binnen de analyse voor. De oppervlakte van de eenheidsbol in n-dimensies, in de literatuur vaak aangegeven door \omega_n, kan als volgt worden uitgedrukt door gebruik te maken van de Gammafunctie,

\omega_n = \frac{2 \pi ^ {n/2}}{\Gamma(n/2)}.

De inhoud van een eenheidsbol is \omega_n / n.

Niet-algemene formules voor oppervlakte en inhoud[bewerken]

In de drie-dimensionale Euclidische ruimte is de inhoud van een eenheidsbol

V = \frac{4}{3}\pi r^3

en is de oppervlakte gelijk aan

A = 4 \pi r^2. \,

Eenheidsbollen in de genormeerde vectorruimte[bewerken]

Preciezer gezegd, de open eenheidsbol in een genormeerde vectorruimte V , met de norm \|\cdot\|, is

 \{ x\in V: \|x\|<1 \}.

Het is het inwendige van de gesloten eenheidsbol van (V,||·||),

 \{ x\in V: \|x\|\le 1\}.

Deze laatste is de disjuncte vereniging van de eerste en hun gemeenschappelijke grensvlak, de eenheidsbol van (V,||·||),

 \{ x\in V: \|x\| = 1 \}.

Commentaar[bewerken]

De 'vorm' van de eenheidsbol is volledig afhankelijk van de gekozen norm; de eenheidsbol kan zelfs 'hoeken' hebben , en kan bijvoorbeeld lijken op [−1,1]n, in het geval van norm l>∞ in Rn. De ronde bal wordt opgevat als de gebruikelijke Hilbertruimte-norm, in het eindig-dimensionale op Euclidische afstand gebaseerde geval is het grensvlak van deze ronde bal dat wat meestal wordt bedoeld met de eenheidsbol.

Generalisaties[bewerken]

Metrische ruimtes[bewerken]

Alle drie de bovenstaande definities kunnen eenvoudig worden gegeneraliseerd naar een metrische ruimte, met betrekking tot een gekozen oorsprong. Topologische overwegingen met betrekking tot het inwendige, de afsluiting en het grensvlak hoeven echter niet altijd op dezelfde wijze van toepassing te zijn. In de ultrametrische ruimten bijvoorbeeld leiden deze definities tegelijkertijd tot open- en gesloten verzamelingen en kan de eenheidsbol in sommige metrische ruimten zelfs leeg zijn.

Kwadratische vormen[bewerken]

AlsV een lineaire ruimte is met een echte kwadratische vorm F: V → R, dan wordt (x ∈ V:F (x) = 1) soms de eenheidsbol' van V genoemd. Twee-dimensionale voorbeelden zijn de split-complexe getallen en de duale getallen. Wanneer F negatieve waarden accepteert, dan wordt (x ∈ V:F(x) = − 1) de tegenbol genoemd.

Zie ook[bewerken]

  • eenheidscirkel en eenheidsschijf: de eenheidsbol en eenheidsbal in twee dimensies
  • sfeer en bal: artikels over bollen en ballen met willekeurige straal (niet noodzakelijk 1).
  • bol: over de bol en de bal in drie dimensies, waar deze meestal sfeer respectievelijk bol genoemd worden!
  • eenheidsvierkant