Knik (constructieleer)

Uit Wikipedia, de vrije encyclopedie
Ga naar: navigatie, zoeken
Het horizontaal verbuigen van spoorstaven (spoorspatting) is een gevolg van knik.

Een knik is een ongecontroleerde, plaatselijke scherpe verbuiging (een plastische vervorming) in een rechte of licht gekromde staaf of balk, onder verlies van stabiliteit, veroorzaakt door een uitwendige kracht. Bij een knik blijft, in tegenstelling tot bij een breuk, het verband (gedeeltelijk) intact.

Een knik kan bijvoorbeeld ontstaan bij een driepuntsbuigproef.

Constructieleer[bewerken]

Knik en buiging: spoorspatting op de spoorbrug over de Delaware, nadat de brug in brand was geraakt. (1935)

In de constructieleer zijn de knik en buiging aparte vormveranderingen van een belaste kolom. Zij komen nagenoeg altijd samen voor, omdat het praktisch onmogelijk is een kniklast precies boven het midden van een kolom te plaatsen. Hieronder, onder het kopje Eulerknik, wordt een theoretische formule van Euler besproken, waarbij ook gewezen wordt op extra momenten, die hier nader worden toegelicht. "Knik en buiging" is een bekend begrip in de constuctieleer.

Een stalen kolom zal door een niet centraal op die kolom rustende belasting een moment krijgen, dat in de richting werkt van de resultante van die oplegging naar het midden van de kolom. Dat moment zal een geringe boogvormige verbuiging veroorzaken, die door toename van de belasting op een zeker moment verandert in een sinusvormige verbuiging. Als de oplegging een constructieonderdeel is, dat vast verbonden is met de kolom, is in de regel het moment zo groot, dat het apart moet worden berekend.

Wanneer de belastingveroorzakende resultante zich binnen het doorsnedeoppervlak van de kolom bevindt, is de randspanning door het moment maximaal 3 x groter dan de gelijkelijk over de doorsnede verdeelde kniklast. De randspanning is dan dus 4 x groter dan de gelijkelijk verdeelde belasting ( M/W + F/A ).

Een veiligheidscoëfficiënt van 4 ( of 1/4 ) is dus wenselijk bij knikberekeningen waarbij men theoretisch uitgaat van een kniklast midden boven de kolom.

Eulerknik[bewerken]

Uitbuigen op druk belaste staaf (beide zijden scharnierend opgelegd)

Eulerknik is het verschijnsel waarbij een staaf zonder imperfecties (een perfect rechte staaf) op zuivere druk (enkel normaalkracht, geen momenten aanwezig) wordt belast totdat de knikgrens wordt overschreden.

Zodra deze grens bereikt is zal een staaf in 1 of meer sinusgolven loodrecht op de staafas uitbuigen. Omdat deze vorm van instabiliteit leidt tot bezwijken voordat de volledige materiaalcapaciteit bereikt is, zal een gedrukte constructie hierop altijd gecontroleerd moeten worden.

Een staaf zal enkel uitbuigen indien een "kritische belasting" aangebracht wordt. In de 18e eeuw stelde de wiskundige Leonhard Euler een formule op die de maximale belasting bepaalt die een lange, slanke staaf kan dragen zonder knikken. De precieze grootte van deze kracht hangt af van de oplossing van een differentiaalvergelijking en de randvoorwaarden, en is gelijk aan:

P_{k}=\frac{\pi^2 \cdot E \cdot I}{l_k^2}

Hierbij is (E) de elasticiteitsmodulus, (I) het oppervlaktetraagheidsmoment en (\! l_k) de kniklengte. De kniklengte is de afstand tussen een top en een dal van de momentenfunctie en hoeft niet gelijk te zijn aan de effectieve lengte van de staaf. In het weergegeven voorbeeld, waarbij als randvoorwaarden 2 scharnieropleggingen zijn aangebracht, is de kniklengte gelijk aan de lengte van de staaf.

Voor het bestaan van "Eulerknik" gebruikte men de hiergenoemde "momentenknik". Daarbij gaat men uit van een onder en boven scharnierende staaf, waarbij in de scharnierpunten gelijke doch tegengestelde momenten werken. Door die momenten ontstaat halverwege de staaflengte een uitbuiging : f = M.L^2 / 8.E.I, waarin M = P x f. In de vergelijking kan dan links en rechts de f weggestreept worden, hetgeen betekent, dat er geen uitbuiging is als P = 8.E.I / L^2. De conclusie is dan gerechtvaardigd om te stellen, dat als P groter wordt er een uitbuiging ontstaat die tot bezwijken toeneemt en als P kleiner wordt de uitbuiging terug wil gaan naar 0 of de kromming die door een gering extern moment is veroorzaakt.

De Eulerknikformule is puur theoretisch, wanneer de staaf niet perfect recht is (en dit zal in werkelijkheid altijd zo zijn), of de staaf wordt excentrisch belast, dan zal de drukspanning in de staaf, samen met de initiële uitbuiging, voor een extra moment zorgen waardoor de staaf vroegtijdig (onder de knikgrens) bezwijkt. In de puur theoretische formule liggen de belasting en het hart van de staaf in een lijn. De drukspanning is dan halverwege de staaf gelijkmatig over de doorsnede verdeeld en geldt : σk = P/F, waarin F het oppervlak van de doornede is. Bij toename van de belasting zal de staaf niet knikken maar in elkaar gedrukt worden. Als de spanning niet gelijkmatig verdeeld is, liggen de belasting en de hart(lijn) van de staaf niet in een lijn en is er sprake van druk en buiging, waarbij de onregelmatig verdeelde drukspanning verandert in knikspanning, waardoor het begrip "knik en buiging" ontstaat.

Figuurlijk gebruik[bewerken]

In het taalgebruik komt de knik voor als in knikkende knieën hebben, dat zoiets betekent als erg zenuwachtig zijn voor iets dat komen gaat.

Zie ook[bewerken]