Studentverdeling

Uit Wikipedia, de vrije encyclopedie
Ga naar: navigatie, zoeken

De t-verdeling, ook wel studentverdeling genoemd (naar het pseudoniem "Student" van William Sealy Gosset), is een kansverdeling die is afgeleid van de normale verdeling en verbonden met de verdeling van het geschaalde steekproefgemiddelde van een aselecte steekproef uit een normale verdeling. Het is de verdeling van de toetsingsgrootheid T van de t-toets. Als X_1, \dots , X_n een aselecte steekproef is uit een normale verdeling met verwachtingswaarde \mu en standaardafwijking \sigma, dan is:

T=\frac{\bar X - \mu}{S/\sqrt n}.

De verdeling van T noemt men een t-verdeling met n-1 zogenaamde vrijheidsgraden.

Merk op dat T sterk lijkt op het gestandaardiseerde steekproefgemiddelde \bar X:

\frac{\bar X -\mu}{\sigma/\sqrt n},

dat standaardnormaal verdeeld is, en waarin als het ware de standaardafwijking \sigma vervangen is door de steekproefstandaardafwijking S. Nu is

(n-1)\frac{S^2}{\sigma^2}

chi-kwadraatverdeeld is met n-1 vrijheidsgraden, en zijn \bar X en de steekproefvariantie S^2 onderling onafhankelijk. Daarom definieert men algemeen:

Definitie[bewerken]

De t-verdeling met n vrijheidsgraden is de verdeling van de grootheid:

T_n=\frac{Z}{\sqrt{\chi_n^2/n}},

waarin Z en \chi_n^2 onderling onafhankelijke stochastische variabelen zijn, respectievelijk standaardnormaal verdeeld en chi-kwadraatverdeeld met n vrijheidsgraden.

Kansdichtheid[bewerken]

De grafiek van de kansdichtheid van de t-verdeling lijkt wat vorm betreft sterk op de standaardnormale verdeling, maar is wat 'breder'. Hoe kleiner het aantal vrijheidsgraden is, hoe 'breder' de grafiek van de kansdichtheid.

Voor n vrijheidsgraden wordt deze kansdichtheid f_n gegeven door:

f_n(x)=\frac{\Gamma(\frac{n+1}{2})}{\sqrt{n\pi}\,\Gamma(\frac{n}{2})} \left(1+\frac{x^2}{n}\right)^{-\frac{n+1}2}

Daarin is \Gamma de gammafunctie.

Grafiek van kansdichtheden van de Studentverdeling voor diverse aantallen vrijheidsgraden k. Voor de waarde "infini" (oneindig) komt de dichtheid overeen met een standaardnormale verdeling

Het bijzondere geval n=1 heet Cauchyverdeling.

De verwachtingswaarde bestaat voor n>1 en is gelijk aan 0.
De variantie bestaat voor n>2 en is gelijk aan \tfrac{n}{n-2}.

Tabel van kritieke t-waarden[bewerken]

De onderstaande tabel geeft voor verschillende aantallen vrijheidsgraden ν en een aantal rechter overschrijdingskansen α, de bijbehorende kritieke waarde tα,ν, volgens:

\!\;P(T(\nu) \geq t_{\alpha,\nu})=\alpha

waarin T(ν) t-verdeeld is met ν vrijheidsgraden.

Voor grote aantallen vrijheidsgraden geeft de laatste rij van de tabel als benadering de kritieke waarden van de standaard normale verdeling, die beschouwd kunnen worden als de kritieke waarden bij oneindig veel vrijheidsgraden.

De waarden uit de tabel kunnen ook berekend worden met spreadsheets (Office Excel, OpenOffice Calc, etc.). De relevante spreadsheet functie is T.INV(α2-zijdig,ν).

ν α
25% 20% 15% 10% 5% 2,5% 1% 0,5% 0,25 0,1% 0,05%
1 1,000 1,376 1,963 3,078 6,314 12,71 31,82 63,66 127,3 318,3 636,6
2 0,816 1,061 1,386 1,886 2,920 4,303 6,965 9,925 14,09 22,33 31,60
3 0,765 0,978 1,250 1,638 2,353 3,182 4,541 5,841 7,453 10,21 12,92
4 0,741 0,941 1,190 1,533 2,132 2,776 3,747 4,604 5,598 7,173 8,610
5 0,727 0,920 1,156 1,476 2,015 2,571 3,365 4,032 4,773 5,893 6,869
6 0,718 0,906 1,134 1,440 1,943 2,447 3,143 3,707 4,317 5,208 5,959
7 0,711 0,896 1,119 1,415 1,895 2,365 2,998 3,499 4,029 4,785 5,408
8 0,706 0,889 1,108 1,397 1,860 2,306 2,896 3,355 3,833 4,501 5,041
9 0,703 0,883 1,100 1,383 1,833 2,262 2,821 3,250 3,690 4,297 4,781
10 0,700 0,879 1,093 1,372 1,812 2,228 2,764 3,169 3,581 4,144 4,587
11 0,697 0,876 1,088 1,363 1,796 2,201 2,718 3,106 3,497 4,025 4,437
12 0,695 0,873 1,083 1,356 1,782 2,179 2,681 3,055 3,428 3,930 4,318
13 0,694 0,870 1,079 1,350 1,771 2,160 2,650 3,012 3,372 3,852 4,221
14 0,692 0,868 1,076 1,345 1,761 2,145 2,624 2,977 3,326 3,787 4,140
15 0,691 0,866 1,074 1,341 1,753 2,131 2,602 2,947 3,286 3,733 4,073
16 0,690 0,865 1,071 1,337 1,746 2,120 2,583 2,921 3,252 3,686 4,015
17 0,689 0,863 1,069 1,333 1,740 2,110 2,567 2,898 3,222 3,646 3,965
18 0,688 0,862 1,067 1,330 1,734 2,101 2,552 2,878 3,197 3,610 3,922
19 0,688 0,861 1,066 1,328 1,729 2,093 2,539 2,861 3,174 3,579 3,883
20 0,687 0,860 1,064 1,325 1,725 2,086 2,528 2,845 3,153 3,552 3,850
21 0,686 0,859 1,063 1,323 1,721 2,080 2,518 2,831 3,135 3,527 3,819
22 0,686 0,858 1,061 1,321 1,717 2,074 2,508 2,819 3,119 3,505 3,792
23 0,685 0,858 1,060 1,319 1,714 2,069 2,500 2,807 3,104 3,485 3,767
24 0,685 0,857 1,059 1,318 1,711 2,064 2,492 2,797 3,091 3,467 3,745
25 0,684 0,856 1,058 1,316 1,708 2,060 2,485 2,787 3,078 3,450 3,725
26 0,684 0,856 1,058 1,315 1,706 2,056 2,479 2,779 3,067 3,435 3,707
27 0,684 0,855 1,057 1,314 1,703 2,052 2,473 2,771 3,057 3,421 3,690
28 0,683 0,855 1,056 1,313 1,701 2,048 2,467 2,763 3,047 3,408 3,674
29 0,683 0,854 1,055 1,311 1,699 2,045 2,462 2,756 3,038 3,396 3,659
30 0,683 0,854 1,055 1,310 1,697 2,042 2,457 2,750 3,030 3,385 3,646
40 0,681 0,851 1,050 1,303 1,684 2,021 2,423 2,704 2,971 3,307 3,551
50 0,679 0,849 1,047 1,299 1,676 2,009 2,403 2,678 2,937 3,261 3,496
60 0,679 0,848 1,045 1,296 1,671 2,000 2,390 2,660 2,915 3,232 3,460
80 0,678 0,846 1,043 1,292 1,664 1,990 2,374 2,639 2,887 3,195 3,416
100 0,677 0,845 1,042 1,290 1,660 1,984 2,364 2,626 2,871 3,174 3,390
120 0,677 0,845 1,041 1,289 1,658 1,980 2,358 2,617 2,860 3,160 3,373
0,674 0,842 1,036 1,282 1,645 1,960 2,326 2,576 2,807 3,090 3,291

Uit de tabel kunnen ook de kritieke waarden voor tweezijdige overschrijdingskansen worden afgelezen. Elke kolom correspondeert dan met een tweemaal zo grote overschrijdingskans.