Zestien-kwadratenidentiteit van Pfister

Uit Wikipedia, de vrije encyclopedie
Ga naar: navigatie, zoeken

In de algebra is de zestien-kwadratenidentiteit van Pfister een niet-bilineaire identiteit van de vorm


\begin{align}
{} & (x_1^2+x_2^2+x_3^2+x_4^2+\cdots+x_{16}^2)(y_1^2+y_2^2+y_3^2+y_4^2+\cdots+y_{16}^2) \\
& \quad =  z_1^2+z_2^2+z_3^2+z_4^2+\cdots+z_{16}^2
\end{align}

Deze identiteit werd in de jaren 1960 voor het eerst bewezen ​door Hans Zassenhaus en W. Eichhorn.[1] en Ongeveer tegelijkertijd werd de identiteit onafhankelijk daarvan door Pfister bewezen.[2] Er zijn verschillende versies, een beknopte luidt als volgt:

z_1 = x_1 y_1 - x_2 y_2 - x_3 y_3 - x_4 y_4 - x_5 y_5 - x_6 y_6 - x_7 y_7 - x_8 y_8 + u_1 y_9 - u_2 y_{10} - u_3 y_{11} - u_4 y_{12} - u_5 y_{13} - u_6 y_{14} - u_7 y_{15} - u_8 y_{16}
z_2 = x_2 y_1 + x_1 y_2 + x_4 y_3 - x_3 y_4 + x_6 y_5 - x_5 y_6 - x_8 y_7 + x_7 y_8 + u_2 y_9 + u_1 y_{10} + u_4 y_{11} - u_3 y_{12} + u_6 y_{13} - u_5 y_{14} - u_8 y_{15} + u_7 y_{16}
z_3 = x_3 y_1 - x_4 y_2 + x_1 y_3 + x_2 y_4 + x_7 y_5 + x_8 y_6 - x_5 y_7 - x_6 y_8 + u_3 y_9 - u_4 y_{10} + u_1 y_{11} + u_2 y_{12} + u_7 y_{13} + u_8 y_{14} - u_5 y_{15} - u_6 y_{16}
z_4 = x_4 y_1 + x_3 y_2 - x_2 y_3 + x_1 y_4 + x_8 y_5 - x_7 y_6 + x_6 y_7 - x_5 y_8 + u_4 y_9 + u_3 y_{10} - u_2 y_{11} + u_1 y_{12} + u_8 y_{13} - u_7 y_{14} + u_6 y_{15} - u_5 y_{16}
z_5 = x_5 y_1 - x_6 y_2 - x_7 y_3 - x_8 y_4 + x_1 y_5 + x_2 y_6 + x_3 y_7 + x_4 y_8 + u_5 y_9 - u_6 y_{10} - u_7 y_{11} - u_8 y_{12} + u_1 y_{13} + u_2 y_{14} + u_3 y_{15} + u_4 y_{16}
z_6 = x_6 y_1 + x_5 y_2 - x_8 y_3 + x_7 y_4 - x_2 y_5 + x_1 y_6 - x_4 y_7 + x_3 y_8 + u_6 y_9 + u_5 y_{10} - u_8 y_{11} + u_7 y_{12} - u_2 y_{13} + u_1 y_{14} - u_4 y_{15} + u_3 y_{16}
z_7 = x_7 y_1 + x_8 y_2 + x_5 y_3 - x_6 y_4 - x_3 y_5 + x_4 y_6 + x_1 y_7 - x_2 y_8 + u_7 y_9 + u_8 y_{10} + u_5 y_{11} - u_6 y_{12} - u_3 y_{13} + u_4 y_{14} + u_1 y_{15} - u_2 y_{16}
z_8 = x_8 y_1 - x_7 y_2 + x_6 y_3 + x_5 y_4 - x_4 y_5 - x_3 y_6 + x_2 y_7 + x_1 y_8 + u_8 y_9 - u_7 y_{10} + u_6 y_{11} + u_5 y_{12} - u_4 y_{13} - u_3 y_{14} + u_2 y_{15} + u_1 y_{16}
z_9  =  x_9 y_1 - x_{10} y_2 - x_{11} y_3 - x_{12} y_4 - x_{13} y_5 - x_{14} y_6 - x_{15} y_7 - x_{16} y_8 + x_1 y_9 - x_2 y_{10} - x_3 y_{11} - x_4 y_{12} - x_5 y_{13} - x_6 y_{14} - x_7 y_{15} - x_8 y_{16}
z_{10} = x_{10} y_1 + x_9 y_2 + x_{12} y_3 - x_{11} y_4 + x_{14} y_5 - x_{13} y_6 - x_{16} y_7 + x_{15} y_8 + x_2 y_9 + x_1 y_{10} + x_4 y_{11} - x_3 y_{12} + x_6 y_{13} - x_5 y_{14} - x_8 y_{15} + x_7 y_{16}
z_{11} = x_{11} y_1 - x_{12} y_2 + x_9 y_3 + x_{10} y_4 + x_{15} y_5 + x_{16} y_6 - x_{13} y_7 - x_{14} y_8 + x_3 y_9 - x_4 y_{10} + x_1 y_{11} + x_2 y_{12} + x_7 y_{13} + x_8 y_{14} - x_5 y_{15} - x_6 y_{16}
z_{12} = x_{12} y_1 + x_{11} y_2 - x_{10} y_3 + x_9 y_4 + x_{16} y_5 - x_{15} y_6 + x_{14} y_7 - x_{13} y_8 + x_4 y_9 + x_3 y_{10} - x_2 y_{11} + x_1 y_{12} + x_8 y_{13} - x_7 y_{14} + x_6 y_{15} - x_5 y_{16}
z_{13} = x_{13} y_1 - x_{14} y_2 - x_{15} y_3 - x_{16} y_4 + x_9 y_5 + x_{10} y_6 + x_{11} y_7 + x_{12} y_8 + x_5 y_9 - x_6 y_{10} - x_7 y_{11} - x_8 y_{12} + x_1 y_{13} + x_2 y_{14} + x_3 y_{15} + x_4 y_{16}
z_{14} = x_{14} y_1 + x_{13} y_2 - x_{16} y_3 + x_{15} y_4 - x_{10} y_5 + x_9 y_6 - x_{12} y_7 + x_{11} y_8 + x_6 y_9 + x_5 y_{10} - x_8 y_{11} + x_7 y_{12} - x_2 y_{13} + x_1 y_{14} - x_4 y_{15} + x_3 y_{16}
z_{15} = x_{15} y_1 + x_{16} y_2 + x_{13} y_3 - x_{14} y_4 - x_{11} y_5 + x_{12} y_6 + x_9 y_7 - x_{10} y_8 + x_7 y_9 + x_8 y_{10} + x_5 y_{11} - x_6 y_{12} - x_3 y_{13} + x_4 y_{14} + x_1 y_{15} - x_2 y_{16}
z_{16} = x_{16} y_1 - x_{15} y_2 + x_{14} y_3 + x_{13} y_4 - x_{12} y_5 - x_{11} y_6 + x_{10} y_7 + x_9 y_8 + x_8 y_9 - x_7 y_{10} + x_6 y_{11} + x_5 y_{12} - x_4 y_{13} - x_3 y_{14} + x_2 y_{15} + x_1 y_{16}

waar de u_i gelijk zijn aan,

u_1 = \frac{1}{c}\left((ax_1^2+x_2^2+x_3^2+x_4^2+x_5^2+x_6^2+x_7^2+x_8^2)x_9 - 2x_1(bx_1 x_9 +x_2 x_{10} +x_3 x_{11} +x_4 x_{12} +x_5 x_{13} +x_6 x_{14} +x_7 x_{15} +x_8 x_{16})\right)
u_2 = \frac{1}{c}\left((x_1^2+ax_2^2+x_3^2+x_4^2+x_5^2+x_6^2+x_7^2+x_8^2)x_{10} - 2x_2(x_1 x_9 +bx_2 x_{10} +x_3 x_{11} +x_4 x_{12} +x_5 x_{13} +x_6 x_{14} +x_7 x_{15} +x_8 x_{16})\right)
u_3 = \frac{1}{c}\left((x_1^2+x_2^2+ax_3^2+x_4^2+x_5^2+x_6^2+x_7^2+x_8^2)x_{11} - 2x_3(x_1 x_9 +x_2 x_{10} +bx_3 x_{11} +x_4 x_{12} +x_5 x_{13} +x_6 x_{14} +x_7 x_{15} +x_8 x_{16})\right)
u_4 = \frac{1}{c}\left((x_1^2+x_2^2+x_3^2+ax_4^2+x_5^2+x_6^2+x_7^2+x_8^2)x_{12} - 2x_4(x_1 x_9 +x_2 x_{10} +x_3 x_{11} +bx_4 x_{12} +x_5 x_{13} +x_6 x_{14} +x_7 x_{15} +x_8 x_{16})\right)
u_5 = \frac{1}{c}\left((x_1^2+x_2^2+x_3^2+x_4^2+ax_5^2+x_6^2+x_7^2+x_8^2)x_{13} - 2x_5(x_1 x_9 +x_2 x_{10} +x_3 x_{11} +x_4 x_{12} +bx_5 x_{13} +x_6 x_{14} +x_7 x_{15} +x_8 x_{16})\right)
u_6 = \frac{1}{c}\left((x_1^2+x_2^2+x_3^2+x_4^2+x_5^2+ax_6^2+x_7^2+x_8^2)x_{14} - 2x_6(x_1 x_9 +x_2 x_{10} +x_3 x_{11} +x_4 x_{12} +x_5 x_{13} +bx_6 x_{14} +x_7 x_{15} +x_8 x_{16})\right)
u_7 = \frac{1}{c}\left((x_1^2+x_2^2+x_3^2+x_4^2+x_5^2+x_6^2+ax_7^2+x_8^2)x_{15} - 2x_7(x_1 x_9 +x_2 x_{10} +x_3 x_{11} +x_4 x_{12} +x_5 x_{13} +x_6 x_{14} +bx_7 x_{15} +x_8 x_{16})\right)
u_8 = \frac{1}{c}\left((x_1^2+x_2^2+x_3^2+x_4^2+x_5^2+x_6^2+x_7^2+ax_8^2)x_{16} - 2x_8(x_1 x_9 +x_2 x_{10} +x_3 x_{11} +x_4 x_{12} +x_5 x_{13} +x_6 x_{14} +x_7 x_{15} +bx_8 x_{16})\right)

en

a=-1,\;\;b=0,\;\;c=x_1^2+x_2^2+x_3^2+x_4^2+x_5^2+x_6^2+x_7^2+x_8^2\,.

De u_i dan gehoorzamen aan

u_1^2+u_2^2+u_3^2+u_4^2+u_5^2+u_6^2+u_7^2+u_8^2 = x_{9}^2+x_{10}^2+x_{11}^2+x_{12}^2+x_{13}^2+x_{14}^2+x_{15}^2+x_{16}^2\,

De identiteit laat dus zien dat het product van twee sommen van zestien kwadraten in het algemeen de som is van zestien rationale kwadraten. Als alle x_i,y_i met  i>8 gelijk worden gesteld aan nul, dan reduceert deze identiteit tot de acht-kwadratenidentiteit van Degen.

Er bestaat geen zestien kwadratenidentiteit waarbij alleen bilineaire functies betrokken zijn aangezien de stelling van Hurwitz laat zien dat een identiteit van de vorm

(x_1^2+x_2^2+x_3^2+ \cdots+x_n^2) (y_1^2 + y_2^2+y_3^2 + \cdots+y_n^2) = z_1^2+z_2^2+z_3^2 + \cdots+z_n^2

met de z_i bilineair functies van de x_i en y_i alleen mogelijk is voor n ∈ {1, 2, 4, 8}.

De meer algemenere stelling van Pfister (1965) laat echter zien dat als de z_i rationale functies zijn van slechts één verzameling van variabelen, (dus een noemer heeft), dat het dan mogelijk is voor alle n = 2^m. [3] Er bestaan dus ook niet-bilineaire versies van de vier-kwadratenidentiteit van Euler en de acht-kwadratenidentiteit van Degen.

Zie ook[bewerken]

Voetnoten[bewerken]

  1. H. Zassenhaus en W. Eichhorn, Herleitung von Acht- und Sechzehn-Quadrate-Identitäten mit Hilfe von Eigenschaften der verallgemeinerten Quaternionen und der Cayley-Dicksonchen Zahlen, Arch. Math. 17 (1966), blz. 492-496
  2. A. Pfister, Zur Darstellung von -1 als Summe von Quadraten in einem Körper, 'J. London Math. Soc. 40 (1965), blz. 159-165
  3. Keith Conrad, Pfister's Theorem on Sums of Squares, Keith Conrad, (zie hier)

Externe link[bewerken]