Algebra (structuur)

Uit Wikipedia, de vrije encyclopedie
Ga naar: navigatie, zoeken
Algebraïsche
structuren

Magma
Halfgroep
Monoïde
Groep
Ring / Ideaal
Lichaam/Veld

Moduul
Vectorruimte
Algebra

Categorie
Tralie
Boole-algebra

Een algebra is een uitbreiding van het begrip vectorruimte uit de lineaire algebra. In een algebra is naast de optelling en de scalaire vermenigvuldiging, ook de vermenigvuldiging van de elementen (vectoren) onderling mogelijk.

Definitie[bewerken]

Een vectorruimte over een lichaam (Nederlands) of veld (Belgisch) heet een algebra als op een vermenigvuldiging gedefinieerd is die een bilineaire operator is, d.w.z. dat voor alle geldt:

voor alle .

Equivalent geldt dat een algebra is, als met de vermenigvuldiging een niet-noodzakelijk associatieve ring is waarvoor bovendien de scalaire vermenigvudiging en compatibel zijn, wat inhoudt dat aan de laatste van de drie bovengenoemde eisen voldaan is.

Een algebra over het lichaam , wordt ook wel een -algebra genoemd.

In sommige speciale gevallen krijgt de bilineaire operator een andere naam dan vermenigvuldiging.

Voorbeelden[bewerken]

De -matrices vormen een algebra met de vermenigvuldiging van matrices.

Indien de matrixelementen uit het lichaam komen, vormen deze matrices een -algebra.

De reële vectorruimte met het kruisproduct is een algebra:

Ook de verzameling polynomen in één variabele is een algebra voor de gewone optelling en vermenigvuldiging van polynomen. Hetzelfde geldt ook voor polynomen in meer, in variabelen. Als de coëfficiënten element van het lichaam zijn, vormen respectievelijk een -algebra. is de verzameling polynomen in de variabele met coëfficiënten in het lichaam .

Associatieve algebra[bewerken]

In de bovenstaande definitie wordt niet geëist dat de vermenigvuldiging associatief of commutatief is. Een associatieve algebra voldoet aan de bijkomende voorwaardedat de vermenigvuldiging associatief is, d.w.z. dat voor alle geldt:

Het algemene geval wordt daarom ook niet-associatieve algebra genoemd, hoewel "niet noodzakelijk associatief" nauwkeuriger zou zijn.

Voorbeelden[bewerken]

Matrixvermenigvuldiging is associatief.

Het vectorproduct in is niet associatief. Noteer voor de canonieke orthonormale basis, dan geldt

Vermenigvuldiging van veeltermen is associatief en commutatief.

De tensoralgebra van een willekeurige vectorruimte is een associatieve algebra. Hij wordt ook de vrije algebra over genoemd.

Ringen[bewerken]

1rightarrow blue.svg Zie Algebra (ringtheorie) voor het hoofdartikel over dit onderwerp.

Sommige bronnen verzwakken de eis "vectorruimte over een lichaam" tot "moduul over een commutatieve ring met eenheid". De definitie wordt hierdoor niet ingewikkelder, maar het niet altijd bestaan van een basis compliceert de studie enigszins.

Bijzondere soorten algebra's[bewerken]

Diverse specialistische gebieden van de wiskunde onderscheiden speciale soorten (meestal associatieve) algebra's: