Antiprisma

Uit Wikipedia, de vrije encyclopedie
Naar navigatie springen Naar zoeken springen
zeventienhoekig antiprisma

Een -zijdig antiprisma is in de meetkunde een veelvlak, dat door een onder- en een bovenvlak wordt gevormd van twee evenwijdige kopieën van een -zijdige veelhoek, verbonden door een band van alternerende driehoeken. Boven- en ondervlak[1] mogen daarbij ten opzichte van elkaar zijn verschoven en gedraaid. Antiprisma's zijn verwant met gewone prisma's, met als verschil dat bij een prisma boven- en ondervlak niet ten opzichte van elkaar zijn gedraaid en door parallellogrammen met elkaar worden verbonden.

Een antiprisma heet regelmatig als de veelhoek die onder- en bovenzijde vormt, een regelmatige veelhoek is. Een regelmatig antiprisma wordt recht genoemd, als de middelpunten van onder- en bovenvlak loodrecht boven elkaar liggen ten opzichte van beide vlakken.

Er ontstaat extra regelmaat als het onder- en bovenvlak van een recht antiprisma ten opzichte van elkaar over de halve hoek van de veelhoek zijn gedraaid, dus over . De zijkant van een recht antiprisma bestaat in dat geval uit een band van gelijkbenige driehoeken, een dergelijk recht antiprisma heet uniform als de zijkant bestaat uit een band van gelijkzijdige driehoeken. Een regelmatig achtvlak is het uniforme antiprisma met het minste aantal zijvlakken.

Het duale veelvlak van een antiprisma is een trapezoëder.

Formules[bewerken | brontekst bewerken]

  • De straal van de omgeschreven bol van een recht -zijdig antiprisma met zijde en hoogte kan worden berekend als de hypotenusa in een rechthoekige driehoek met rechthoekszijden en de straal van de omgeschreven cirkel van de veelhoek. Dus:
  • De oppervlakte van een recht -zijdig antiprisma met zijde en hoogte is samengesteld uit de oppervlakten van onder- en bovenvlak en de oppervlakten van de gelijkbenige driehoeken van de zijkant. Er geldt:
en
,
zodat gegeven wordt door de formule:
  • Als het antiprisma uniform is, is:
en
,
zodat
  • De inhoud van een uniform -zijdig antiprisma met zijde wordt gegeven door:

Hierin zijn en de secans en cosecans.

Varianten[bewerken | brontekst bewerken]

Het uniforme antiprisma kan worden gegeneraliseerd tot uniforme antiprisma's in de ruime zin, met hoekpuntconfiguratie , met , waarbij bijvoorbeeld gelijk is aan , maar niet gelijk is aan . Het grondvlak van is (ster)veelhoek , die gelijk is aan . Het bovenvlak is gedraaid ten opzichte van het grondvlak, en bij het doorlopen van de ribben van onder- naar bovenvlak wordt ook een draai om de verticale as van het veelvlak gemaakt over deze hoek. De voorwaarde is er omdat de lengte van de horizontale zijde van een driehoekig zijvlak langer moet zijn dan de horizontale component van de beide andere zijden.

  • Voor en relatief priem is er het sterantiprisma met en het retrograde sterantiprisma met .
  • Als en grootste gemene deler hebben is er met en een samengesteld veelvlak van identieke uniforme antiprisma's door elkaar, elk met grondvlak , samen met grondvlak . Voorbeelden:
    • bestaat uit twee exemplaren van het antiprisma door elkaar.
    • bestaat uit twee exemplaren van het sterantiprisma door elkaar.
    • bestaat uit twee exemplaren van het retrograde sterantiprisma door elkaar.

Voor even heeft het object de symmetrie van een prisma Dph en anders die van een antiprisma Dpd.