Scalair veld

Uit Wikipedia, de vrije encyclopedie
Naar navigatie springen Naar zoeken springen

In de wiskunde en de natuurkunde associeert een scalair veld een scalaire waarde met elk punt in de ruimte. Een scalair veld kan zowel wiskundig als natuurkundig van aard zijn. Scalaire velden worden in de natuurkunde gebruikt om scalaire grootheden in de ruimte weer te geven, zoals de temperatuurverdeling in een ruimte of de luchtdruk.

Net zoals het concept van een scalair in de wiskunde identiek is aan het concept van een scalair in de natuurkunde, zo is ook het scalaire veld, zoals dit in de differentiaalmeetkunde is gedefinieerd, in abstracte zin identiek aan de niet gekwantificeerde scalaire velden uit de natuurkunde.

Definitie[bewerken]

Een scalair veld is een functie van naar . Het is een functie die gedefinieerd is op de -dimensionale al dan niet euclidische ruimte met reële waarden. Vaak wordt voorgeschreven dat het scalaire veld continu of ten minste enkele keren differentieerbaar moet zijn, dat wil zeggen een klasse -functie.

Het scalaire veld kan worden gevisualiseerd als een -dimensionale ruimte, waar aan elk punt in deze ruimte een reëel- of complex getal is gekoppeld.

De afgeleide van een scalair veld resulteert in een vectorveld dat men de gradiënt noemt.