Standaardafwijking

Uit Wikipedia, de vrije encyclopedie
Ga naar: navigatie, zoeken

De standaardafwijking of standaarddeviatie (vaak aangeduid met de Griekse letter σ (sigma)), een begrip in de statistiek, is een maat voor de spreiding van een variabele of van een verdeling of populatie. De standaardafwijking is gedefinieerd als de wortel uit de variantie, en daardoor vergelijkbaar met de waarden van de variabele zelf.

De standaardafwijking wordt gebruikt om de spreiding — de mate waarin de waarden onderling verschillen — van een verdeling aan te geven. De standaardafwijking wordt, anders dan de variantie, in dezelfde eenheid uitgedrukt als de verwachtingswaarde of het gemiddelde.

Ook voor een steekproef uit een populatie of verdeling spreekt men standaardafwijking, of beter van steekproefstandaardafwijking, meestal aangeduid met de letter s. Deze grootheid is een schatting van de standaardafwijking in de bijbehorende populatie of verdeling. Voor een steekproef is de variantie (ongeveer) het gemiddelde van de kwadraten van de afwijking van de metingen ten opzichte van het gemiddelde van de gegevens.

Normale verdeling[bewerken]

Diagramma standaardafwijking.png

Bij normale verdelingen wijkt van de mogelijke waarden:

  • 68,26% ten hoogste 1 keer de standaardafwijking af van de verwachtingswaarde (het midden van de verdeling)
  • 95,44% ten hoogste 2 keer de standaardafwijking af van de verwachtingswaarde
  • 99,73% ten hoogste 3 keer de standaardafwijking af van de verwachtingswaarde
  • 99,9937% ten hoogste 4 keer de standaardafwijking af van de verwachtingswaarde
  • 99,999943% ten hoogste 5 keer de standaardafwijking af van de verwachtingswaarde
  • 99,9999998% ten hoogste 6 keer de standaardafwijking af van de verwachtingswaarde

Willekeurige verdeling[bewerken]

Dankzij de centrale limietstelling weten we verder dat voor veel verdelingen de verdeling van de som en dus ook van het gemiddelde van een groot aantal onafhankelijke waarnemingen daaruit, bij voldoende veel metingen bij benadering de vorm van een normale verdeling heeft. Bijgevolg gelden de bovengenoemde percentages niet alleen voor de normale verdeling, maar bij benadering ook voor het gemiddelde van een groot aantal onafhankelijke waarnemingen uit veel onbekende verdelingen.

Zie ook[bewerken]