Starship (SpaceX)

Uit Wikipedia, de vrije encyclopedie
Naar navigatie springen Naar zoeken springen
Artistieke voorstelling van Starship naar de ontwerpspecificaties van september 2018.

Starship is een tweetrappig al dan niet bemand zeer zwaar lanceersysteem in ontwikkeling van SpaceX. De boostertrap van Starship, die nodig is om de aarde te verlaten, heet Super Heavy. De Naam Starship slaat op zowel tweedetrap met een compartiment voor bemanning, vracht of satellieten als op de eerste-en-tweede trap als geheel.[1] Het project was voorheen bekend als de Mars Colonial Transporter of MCT (voor september 2016), het Interplanetary Transport System of ITS (sept. 2016 - juni 2017) en Big Falcon Rocket (BFR) (juni 2017 - november 2018). Intern bij SpaceX werd de raket rond 2015-2016 (mogelijk al in 2010) enige tijd aangeduid met de onofficiële werknaam Big Fucking Rocket

Starship vormt een volledig herbruikbaar ruimtevaartuig dat is bedoeld om 100 tot 150 ton aan vracht of tot 100 mensen per vlucht in de ruimte te brengen. In expendable mode zou dat zelfs 250 ton kunnen zijn. Vluchten naar Mars (en terug) behoren tot de mogelijkheden. De eerste trap wordt Super Heavy genoemd en de tweede trap die zowel een bemanningshabitat als een satellietlanceerinstallatie kan bevatten heet Starship. De bouw van het testversie van het Starship was anno september 2018 begonnen.

Het eerste conceptontwerp werd op 27 september 2016 door SpaceX oprichter en ceo Elon Musk op het International Astronatical Congress gepresenteerd als Interplanetairy Transport System. Een jaar later werd een verkleind, makkelijker haalbaar ontwerp met een bredere inzetbaarheid gepresenteerd met de naam Big Falcon Rocket. In 2018 werden nog enkele aanpassingen aan het ontwerp gedaan waaronder een verlenging, een versimpeld landingsgestel met geïntegreerde stuurvleugels en de keuze om de raket van roestvaststaal in plaats van koolstofvezel te bouwen. Het project staat onder directe leiding van Musk zelf.[2] Met de ontwikkeling van de Starship is zo’n vijf miljard dollar gemoeid.

SpaceX officials hebben begin 2018 aangegeven dat ze op koers liggen voor eerste “hopper-testvluchten” met de tweede-trap/ruimteschip in de eerste helft van 2019. Een half jaar later verwachtte Gwynne Shotwell dat die eind 2019 zullen plaatsvinden. Een eerste onbemande ruimtevlucht zou mogelijk al in 2020 kunnen plaatsvinden en er wordt gestreefd naar een eerste bemande vlucht langs de Maan in 2023.

Elon Musk wil in de toekomst met Starship, de Falcon 9, de Falcon Heavy en de (bemande en onbemande) Dragon 2 vervangen. Bemande maanlandingen en marslandingen, satellietlanceringen en eventueel zelfs langeafstandsvluchten op aarde behoren tot de mogelijkheden.

Geschiedenis[bewerken]

Voorgeschiedenis[bewerken]

In 2003, een jaar na de oprichting van SpaceX, gaf Musk al aan te dromen van het bouwen van een "Saturnus 6".[3] Sinds 2007 heeft Musk kleine stukjes van zijn plannen voor Mars-kolonisatie vanaf de jaren 2020 gemaakt en meermaals bijgesteld. Een eerste vrachtmissie met de MCT zou in zijn planning in 2022 gelanceerd moeten worden En de eerste mensen komen in 2024 op Mars aan. Er wordt dan een begin gemaakt met de bouw van een zelfvoorzienende Martiaanse stad voor tienduizenden inwoners.

Vergelijking van SpaceX raketten Falcon 9 1.0 met Merlin 1C-raketmotoren, Falcon 9 1.1 met Merlin 1D-raketmotoren en een tien meter diameter Mars-draagraket met (toen nog) enorme Raptors zoals die in 2013 werd voorgesteld

In 2010 sprak Elon Musk eenmalig over een serie super-heavy-lift-raketten die "Falcon X", "Falcon X Heavy" en "Falcon XX" zouden heten. Deze waren goed bekeken uitvergrotingen van de Falcon 9 en Falcon Heavy en moesten zeer zware nog te ontwikkelen Merlin 2-raketmotoren gaan gebruiken. Musk toonde daarbij een artistieke impressie van dat plan.[4] Zowel de Merlin 2 als de Falcon X-serie kwamen niet verder dan de conceptuele fase. In de ontwikkeling van een zeer zware raketmotor werd RP1-kerosine als brandstof bij het Merlin 2-concept vervangen door Methaan voor de Raptor-raketmotor waarvan de ontwikkeling in 2012 werd aangevangen.

Ondertussen heeft SpaceX het bouwen lanceren en landen van raketten en ruimteschepen onder de knie gekregen met de Falcon 9, de Dragon en de Dragon 2. Veel van deze bekwaamheid en ontwikkelde technieken zijn nodig voor de veel grotere Starship.

Ontwikkeling[bewerken]

Er wordt sinds 2014 met meer prioriteit gewerkt aan een nieuwe, op methaan werkende raketmotor genaamd Raptor die een reusachtige draagraket met de werknaam Starship moet gaan voortstuwen. Deze draagraket zou net als de Falcon 9 en Falcon Heavy (deels) herbruikbaar zijn en met een landingsgestel uitgerust worden. Dat betekent dus dat de Raptors voor een landing ook in staat zouden moeten zijn als retroraketten te fungeren voor een zachte landing. Starship is nodig om de MCT uit de zwaartekracht van de aarde te krijgen. Maar de MCT, die het formaat zou hebben van zo'n honderd SUV's, kan door de kleinere zwaartekracht en dunnere Mars-atmosfeer zelfstandig terug naar de aarde vliegen.[5] De Raptor moest volgens Musk de effectiefste raketmotor ooit worden met de gunstigste stuwkracht per kilogram brandstof verhouding ooit. Het record voor de gunstigste stuwkracht per kilogram brandstof verhouding is overigens al in handen van SpaceX dat dit record vestigde en door upgrades meermaals verbeterde met de Merlin 1D-raketmotor. De keuze voor methaan als brandstof is gemaakt omdat methaan goedkoop is en "betrekkelijk gemakkelijk" uit de atmosfeer van Mars gewonnen kan worden. Een Mars-rakettrap zou dan kunnen landen en opnieuw volgetankt kunnen worden. Elon Musk heeft in 2015 aangegeven dat er een "vriendelijkere" naam voor de "BFR" bedacht zou worden.

Een zuurstof voorverbrander van de Raptor werd in 2015 op NASA Stennis getest.

Aanvankelijk werden componenten voor de Raptor getest op NASA’s Stennis Space Center in Mississippi. In januari 2016 kreeg SpaceX een subsidie van het Amerikaanse ministerie van defensie voor het ontwikkelen van een prototype upperstage-uitvoering van de Raptor. In juli 2016 werd de eerste complete Raptor naar de SpaceX' eigen McGregor Test Facility in Texas vervoerd om testen te ondergaan. Het gaat dan nog om een verkleinde maar volledig werkende uitvoering van de Raptor. De eerste test vond plaats in september 2016 en foto's van die test werden een dag voor de presentatie van het ITS-ontwerp door Musk op Twitter geplaatst. Daarbij meldde Musk de toen beoogde technische gegevens voor de Raptor. (Het formaat en bijbehorende kracht van het Raptor-ontwerp zijn sindsdien aangepast aan het vernieuwde ontwerp van Starship)

Lanceringen zullen waarschijnlijk plaatshebben vanaf SpaceX eigen ruimtehaven die in het Texaanse Boca Chica enkele kilometers van de Mexicaanse grens aan de Golf van Mexico in aanbouw is.

In eerdere plannen bestond de draagraket uit een of drie core-boosters met een diameter van 10 meter. Iedere core-booster zou negen Raptors in een octaweb ophanging hebben zoals de Merlin 1D motoren bij de Falcon 9 en Falcon Heavy zijn geplaatst.

In 2015 werd gesproken over een enkele booster met een diameter van 12,5 tot 15 meter.

Op sociale media en dan vooral op Reddit werd rijkelijk gespeculeerd over hoe de MCT en BFR er uit zouden zien. Op 17 september 2016 meldde Musk op Twitter dat gebleken was dat de MCT in staat is veel verder dan mars te kunnen komen en dat er dus een andere naam gekozen moest worden. Het publiek kwam massaal met suggesties.[6] Een dag later bevestigde Musk op Twitter de naam Interplanetary Transport System.[7]

Het in 2016 gepresenteerde ontwerp: ITS[bewerken]

Een significante stap in het ontwerp van de BFR was het ITS, een conceptontwerp dat Elon Musk op 27 september 2016 onder grote internationale mediabelangstelling op de International Astronautical Conference in Mexico presenteerde. Het bevatte al veel elementen die in het eindontwerp terugkomen maar was nog een stuk groter. Het ITS zou uit drie grote onderdelen bestaan. Een booster-raket, een bemand ruimteschip en een ruimtetankschip.[8] Musk meldde dat het ontwerp gedurende de ontwikkeling er op details er wat anders uit zou komen te zien dan in de animatie, maar dat ze het ruimteschip wel zoveel als mogelijk erop wilden laten lijken. Verder zei hij de bouw van zijn gedroomde stad op Mars niet zelf te willen uitvoeren, maar de vlucht erheen faciliteren opdat anderen Mars gaan inrichten. Om gewicht te besparen zou het ITS grotendeels van composiet-materialen gebouwd worden.

De ITS booster[bewerken]

Een voorstelling van de ITS-Booster tijdens de vlucht terug naar de aarde. De motoren van middencluster worden ook als rem-raketten gebruikt.

De booster zou een 77,5 meter lange herbruikbare raket-trap die het ruimteschip tot aan de rand van de ruimte brengt zijn. Deze zou een diameter van 12 meter hebben en worden voortgestuwd door 42 Raptors die voor gebruik in de atmosfeer zijn bedoeld en gezamenlijk een stuwkracht van 127 meganewton leveren. Ter vergelijking: dat is drie-en-een-half keer wat een Saturnus V-maanraket leverde. De Raptors zouden in 2 ringen en een middencluster worden geplaatst. De buitenste ring bevatte 21 Raptors, de binnenste ring bevatte er 14. Het middencluster bestond uit een middelste Raptor met daaromheen zes Raptors. Dit middencluster moest beweegbaar zijn om ermee te kunnen sturen. De motoren van ringen eromheen waren gefixeerd. Anders dan de Falcon 9-boosters, zou de ITS-booster drie landingspoten en drie gridfins hebben in plaats van vier. Bij het uitvallen van enkele motoren zou de raket door langer te branden toch zijn missie kunnen voltooien. Musk verwachtte de landingstechnieken nog zo te verfijnen dat de booster terug op het lanceerplatform zou kunnen landen.

Het bemande ITS ruimteschip[bewerken]

Het ITS-ruimteschip nadert de ringen van Saturnus
Voorstelling van een ITS ruimteschip op het oppervlak van Jupiters maan Europa.

Ook het eigenlijke ITS-ruimteschip zou een diameter van 12 meter en drie landingspoten hebben. Het Vehicle zou 49,5 meter lang zijn en uitgerust met negen Raptors die gezamenlijk een maximale stuwkracht van 31 meganewton in de ruimte moesten kunnen leveren. Drie Raptors waren voor zeeniveau bedoeld (om te landen) en zes daaromheen geplaatste raptors zouden verlengde straalpijpen hebben voor effectiever gebruik in het vacuüm van de ruimte. Het voorste deel van het ruimteschip was bedoeld voor de passagiers het achterste deel zou grotendeels uit brandstoftanks bestaan. Tijdens de presentatie werd een foto van een prototype LOX-tank getoond met een aantal SpaceX medewerkers ervoor, waardoor het enorme formaat van het ruimteschip zichtbaar werd. Deze tank sneuvelde overigens begin 2017 tijdens een test waarbij de druk bewust werd opgevoerd tot de tank het zou begeven.[9] Aan boord zou ruimte zijn voor 100 ruimtekolonisten inclusief hun bagage. De voorkant bevatte een groot raam in een gemeenschapsruimte die een soort restaurant of kantine moest zijn. De Raptors moesten het ruimteschip vanaf de rand van de ruimte naar een parkeerbaan (om de aarde) brengen. Daar zou het worden bijgetankt om zijn weg naar Mars te vervolgen. Eén zijde van het ruimteschip werd voorzien van een hitteschild dat van achter iets langer is zodat het ook de Raptors zou beschermen tegen hitte die ontstaat tijdens het binnendringen van een atmosfeer. Op Mars had het ruimteschip rechtstandig kunnen landen. Nadat het dan zou worden bijgetankt met een installatie die methaan en zuurstof uit de Martiaanse atmosfeer kan winnen werd het ruimteschip geacht te kunnen terugvliegen. Dit type ruimteschip zou technisch gezien ook gebruikt worden voor bemande ruimtevaart naar manen van Jupiter of Saturnus.

Het ITS tankschip[bewerken]

Een voorstelling van het bijtanken in de parkeerbaan.

Het tankschip zou op dezelfde booster als het ruimteschip worden gelanceerd en is qua vorm en voortstuwing identiek. In de ruimte aangekomen moest het brandstof in het bemande ruimteschip laden waarmee het bemande ruimteschip naar Mars zou vliegen om er te kunnen landen. Het tankschip zou terugkeren naar de aarde om daar rechtstandig te landen.

De ITS Raptors[bewerken]

Foto van de eerste Raptor test op 25 september 2016

De voor het ITS beoogde Raptor-raketmotor zou kleiner zijn dan eerder werd voorgesteld, ongeveer even groot als de Merlin 1-motoren van de Falcon-raketten, maar levert driemaal zoveel stuwkracht. De Raptor maakt gebruik van een zogenaamde "full-flow stage combustion-cycle". Als brandstof worden vloeibare methaan en vloeibare zuurstof gebruikt (methalox) die tot net boven de stollingstemperatuur zijn gekoeld. Door de brandstoffen zo extreem te koelen slinken ze en past er meer van in de tanks en door de leidingen. Deze techniek werd al eerder in de zuurstoftank van de Falcon 9-full thrust gebruikt.

De beoogde technische gegevens voor de vacuüm-Raptor zijn:

  • een specifieke impuls van 382 seconden; 3.500 kilonewton aan stuwkracht bij 300 bar.
  • een straalpijp met een diameter van ruim 4 meter.
  • de druk in de verbrandingskamer is 3 maal die van een Merlin 1D.
  • een expansieratio van 200

Voor de zeeniveau Raptor zijn de beoogde technische gegevens:

  • een specifieke impuls van 334 seconden; 3.050 kilonewton aan stuwkracht bij 300 bar.
  • de druk in de verbrandingskamer is 3 maal die van een Merlin 1D.
  • een expansieratio van 40

Formaat van het ITS[bewerken]

Door het ruimteschip in de ruimte bij te tanken kan het formaat van de raket nog enigszins in de hand gehouden worden. Een totale lanceercombinatie is daardoor met een lengte van 122 meter, maar 12 meter hoger dan de Saturnus V. De combinatie is over bijna de gehele lengte 12 meter in diameter. Om dit in één keer te lanceren had de raket veel groter en duurder moeten zijn.

ITS Lanceringen[bewerken]

Volgens de plannen van 2016 zou in eerste instantie het ITS vanaf Lanceercomplex 39A van het Kennedy Space Center gelanceerd worden. Het is volgens Musk groot genoeg. LC-39A wordt momenteel voor de Falcon Heavy en Falcon 9 gebruikt. LC-39A was ook het Lanceercomplex voor de meeste Maanvluchten van het Apolloprogramma en later een van de twee lanceerplaatsen van het spaceshuttleprogramma.

Herbruikbaarheid, kosten en doel[bewerken]

De grote onderdelen van het ITS kunnen allemaal landen en opnieuw gelanceerd worden en zijn bedoeld voor 12 tot 15 vluchten. Door herbruikbaarheid moeten de kosten per vlucht betaalbaar worden. Musk streeft naar een ticketprijzen van 200.000 dollar. Een bedrag dat in zijn visie veel mensen kunnen betalen wanneer ze hun huis verkopen. Anders dan bij de plannen van Mars One is een vlucht terug ook mogelijk, met methaan en zuurstof gewonnen op Mars (zie ook boven). Maar hij verwacht dat het grootste deel van de mensen daar geen gebruik van maakt. In 46 tot 106 jaar tijd moet het aantal kolonisten op Mars een miljoen zijn. Dat is volgens Musk het minimumaantal mensen dat nodig is voor een zelfstandige zelfvoorzienende samenleving. Middels terravorming moet Mars dan een leefbare planeet worden en de mensheid multiplanetair.

Het in 2017 gepresenteerde ontwerp: BFR[bewerken]

Het BFR-ruimteschip naar ontwerpspecificaties uit september 2017

In het voorjaar van 2017 gaf Elon Musk al aan dat het ontwerp van het ITS verkleind zou worden en geschikt voor meer dan reizen naar planeten. Op 29 september 2017 presenteerde hij zijn vernieuwde ontwerp op de International Astronautical Conference in het Australische Adelaide.

De naam Interplanetairy Transport System leek weer losgelaten te zijn. Musk sprak weer van “de codenaam BFR”. Eerder had ook Gwynne Shotwell de term BFR gebruikt en uitgelegd dat de afkorting nu voor Big Falcon Rocket staat, waarmee de afkorting zijn profane betekenis verloor.

Er zijn een aantal redenen om de BFR kleiner te maken. In de rakettenfabriek in Hawthorn passen geen raketten met een 12 meter diameter. De BFR zal een diameter van 9 meter hebben. Door de BFR multifunctioneel te maken kan SpaceX de ontwikkelingskosten terugverdienen. De BFR zal in staat zijn om tot ongeveer 150 ton aan vracht in een lage baan om de aarde te brengen en daarbij volledig herbruikbaar zijn. Musk wil op termijn de Falcon 9 en de Falcon Heavy vervangen door de BFR. De lanceerkosten per kilogram vracht zouden veel lager zijn dan die van welke raket tot nog toe gebouwd.

De BFR zal in staat zijn op de maan te landen en zonder daar bij te tanken weer op te stijgen en terug te keren naar de aarde. Op Mars is bijtanken met op Mars gegenereerde brandstof wel nodig voor de terugvlucht.

Andere belangrijke verschillen met het 2016 ontwerp:

  • De booster zal nu 31 Raptor-motoren in plaats van 42 hebben. De Raptor zal ook kleiner en zo’n 40 procent minder krachtig zijn.
  • Het ruimteschip zal vier vacuüm Raptors en twee zeeniveau Raptors hebben en is 48 meter lang. Ook zijn er twee kleine deltavleugels aan de onderkant aangebracht om tijdens terugkeer in de atmosfeer het schip te stabiliseren en te besturen. Aan boord is ruimte voor 42 mensen in plaats van 100.
  • Alle motoren van het ruimteschip/tweede trap zijn kantelbaar.
  • Het tankschip en het passagiersschip koppelen aan met hetzelfde systeem waarmee ze aan de booster zitten. Dus niet buik aan buik.
  • De totale combinatie zal 106 meter lang zijn en een diameter van 9 meter hebben.
  • Ook in deze verkleinde vorm gaat het nog steeds om de krachtigste raket ooit.
  • De Raptor is kleiner en minder krachtig dan in 2016 voorgesteld.

Aangezien Musk de Falcon 9 en de Falcon Heavy wil vervangen door de BFR komt er dus ook een uitvoering van de tweede trap die satellieten kan afzetten.

Eerder maakte SpaceX al bekend dat de in aanbouw zijnde lanceerbasis bij Boca Chica in Texas voornamelijk voor de BFR zal worden ingericht. SpaceX is van plan een grote voorraad Falcon 9’s en Falcon Heavy’s te bouwen zodat ze daarna de ruimte hebben om hun personeel voor de ontwikkeling van de BFR in te zetten. SpaceX zou al in mei 2018 willen beginnen met de bouw van de eerste BFR en zou het systeem in 2022 werkend willen hebben. Aan het eind van zijn presentatie toonde Musk een animatie van een suborbitale passagiersvlucht van New York naar Shanghai waarbij lanceer-en-landingsplatform in zee worden gebruikt.

Raptor 2017[bewerken]

  • Raptors voor zeeniveau zullen een straalpijp-diameter van 130 cm hebben en een stuwkracht van 1.700 kilonewton met een specifieke impuls van 330 s op zeeniveau die oploopt naar 356 s in het vacuüm van de ruimte.
  • De diameter van straalpijp van de Raptor voor het vacuüm 240 cm met een stuwkracht van 1.900 kilonewton bij een specifieke impuls van 375 s.
  • De eerste versies Raptors zijn ontworpen voor een kamerdruk van 250bar. In latere uitvoeringen wordt dit naar 300bar opgevoerd.
  • De Raptors moeten net zo betrouwbaar worden als de motoren van passagiersvliegtuigen.

Latere toelichting en ontwerpaanpassing[bewerken]

Tijdens een Reddit AMA op 14 oktober 2017 schreef Elon Musk dat er sinds de presentatie een en ander in het ontwerp van de BFR ruimteschepen (ook wel BFS, Big Falcon Ship genoemd) is aangepast. Er zullen drie in plaats van twee Raptors voor zeeniveau komen. Ook gaf hij inzicht in de Raptor. Het is een motor waarvan de grootte en kracht makkelijk aan te passen is. De Raptors zullen kleiner en minder krachtig zijn omdat voor de landing van het kleinere raketontwerp minder kracht nodig is. Een kleinere motor is simpeler in staat tot ”deep throtteling” (gas terugnemen). De kleine stuwmotoren voor de besturing zullen ook op methalox werken en de verbrandingskamer lijkt veel op die van de Raptor, maar is drukgevoed. Dit is zo omdat deze snel moeten kunnen starten en een turbopomp te veel tijd nodig heeft om op gang te komen.

Voor vluchten naar Mars is het nodig om het BFR-ruimteschip in de ruimte bij te tanken. Dit vergt vier tankbeurten die kort achterelkaar moeten plaatsvinden. Vloeibare methaan en zuurstof warmen namelijk op en moeten dan afgeblazen worden om de brandstof koud te houden (immers; verdamping onttrekt warmte aan een vloeistof). Wanneer het ruimteschip zijn snelheid en koers heeft behaald worden de grote brandstoftanks geleegd. Voor de landing is dan in kleinere tanks brandstof opgeslagen. Het grootste deel van de vertraging voor de landing (op aarde of Mars) wordt door de atmosfeer gedaan.

Om de BFR te testen wil Musk beginnen met suborbitale vluchten van slechts enkele honderden kilometers. De snelheden van deze testvluchten liggen nog zo laag dat een hitteschild op dit testvoertuig nog niet nodig is.[10]

Het verkleinde prototype van de Raptor uit 2016 heeft inmiddels 1200 seconden gedraaid met een maximum duur van 100 seconden per keer. 100 seconden is de beperking van de brandstoftanks van de testopstelling.

In oktober 2017 maakte de USAF bekend het ontwikkelingscontract met SpaceX voor de Raptor uit 2016 uit te breiden. Er wordt nu een fullscale Raptor gebouwd die voor april 2018 gereed moet zijn, met deze uitbreiding is een subsidie van 40,6 miljoen dollar gemoeid.

In april 2018 raakte bekend dat het ontwerp van de BFR nog enkele meters verlengd is ten opzichte van het ontwerp van 2017. De reden daarvan en het exacte lengteverschil zijn vooralsnog niet bekendgemaakt. Het lijkt daardoor wel de langste raket van de wereld te worden (net iets langer dan de Saturnus V en het toekomstige SLS Block-II).

De BFR zou moeten kunnen lanceren bij de meeste weersomstandigheden. Wind op zeeniveau zou maximaal ongeveer 60 kilometer per uur mogen zijn en wind op hoogte maximaal 300 kilometer per uur.[11]

Ontwerp update september 2018[bewerken]

In september 2018 werd meer bekendgemaakt over het BFR-ruimteschip, en over een nieuw plan om daarmee de eerste ruimtetoeristen een reis om de maan te laten maken. De totale lengte van de BFR is 118 meter, de diameter bleef negen meter. Het ruimteschip zelf is 55 meter lang. Opvallende nieuwe details zijn een drietal staartvinnen in plaats van de eerdere kleine deltavleugels, twee kleine uitklapbare voorvleugels en zeven identieke hoofdmotoren. Met de zeven identieke motoren is het ruimteschip geschikt om tot 100 ton vracht in de ruimte te brengen. Voor zwaardere vrachtmissies kunnen een aantal motoren van voor vacuüm geoptimaliseerde straalpijpen worden voorzien. Rondom de ophanging van de motoren zijn kleinere vrachtruimen aangebracht. Deze vrachtruimen worden verwijderd als er ruimte voor voor vacuüm geoptimaliseerde motoren moet worden vrijgemaakt. Voor propulsieve landing zijn 3 motoren benodigd. De landingspoten zitten in de staartvinnen verwerkt. Het doel van de vinnen is de raket beter te stabiliseren tijdens de terugkeer in de atmosfeer. De onderste twee staartvinnen die aan scharnierpunten zijn bevestigd worden dan een aantal graden omhoog geklapt. De bovenste vin is een landingspoot in de vorm van een vin. Deze heeft geen aerodynamische functie maar zorgt wel voor esthetische symmetrie. Het drie-staartvinnen-landingsgestel-ontwerp was geïnspireerd door Hergé’s maanraket in de Kuifje-stripalbums Raket naar de maan en Mannen op de maan. Ook is “het grote raam van Nicola Tesla” uit het ITS ontwerp van 2016 weer teruggekeerd. Dit uit driehoekige ramen opgebouwde raamwerk lijkt op dat van een schets van een ruimteschip van Nicola Tesla. Ook wanneer er geen atmosfeer op een hemellichaam is zoals op de Maan, dan is er genoeg stuwkracht om af te remmen voor een propulsieve landing.

De booster-trap is uitgerust met 31 Raptors met daarbij de ruimte om die later met nog eens 11 motoren uit te breiden[12]. De gezamenlijke stuwkracht van de 31 motoren is gestegen van 52,7 meganewton naar 60,8 meganewton. Tijdens de presentatie gaf Musk aan dat deze derde ontwerp-revisie vooral het gevolg is van een verduidelijking van de vraag: welke taken moet de BFR kunnen uitvoeren. Het beantwoorden van die vraag was volgens hem ingewikkelder dan het ontwerpen van de BFR zelf.

Eind 2018: nieuwe naam en aanpassing materialen en versimpeling[bewerken]

Super Heavy-Starship zal de grootste raket ooit zijn.

Op 20 november 2018 tweette Musk dat BFR hernoemd zal worden tot Super Heavy voor de booster[13] en Starship voor de tweede trap[14]. Een paar dagen daarvoor tweette Musk dat het BFR-ontwerp weer flink op de schop is gegaan en “heerlijk onlogisch” zou zijn[15]. De vormgeving blijft ongeveer gelijk. Het verschil zit hem in de materiaalkeuze voor het airframe, de tanks en het hitteschild[16]. Het zou nu van 300-serie roestvast staal in plaats van koolstofvezel worden gebouwd[17][18]. Ook is het Pica-X hitteschild komen te vervallen omdat de stalen romp door de cryogene brandstoffen wordt gekoeld[19]. Het roestvast staal zal aan de buitenzijde spiegelend worden afgewerkt om zoveel mogelijk hitte te reflecteren[20].

Begin 2019 gaf Musk ook aan dat de Super Heavy waarschijnlijk eenzelfde soort landingspoten (alias staartvinnen) krijgt als het Starship. Op de eerste (test)vluchten zal de Super Heavy waarschijnlijk met minder dan 31 motoren zijn uitgerust om de financiële schade bij een eventuele raketexplosie te beperken. Ook zij hij over de keuze in eerste instantie één type motoren voor zowel Starship als Super Heavy te gebruiken dat dit tijd bespaard en het nu vooral belangrijk is om zo snel mogelijk vluchten naar de Maan te bewerkstelligen. Ook werkt het reaction controll system nu met stikstof-stuwers in plaats van de eerder geplande methalox verbrandingsstuwers. Door de toevoeging van de stuurvinnen zijn tijdens de landing geen krachtige stuwers meer nodig voor de besturing en in de ruimte zijn simpele stikstof stuwers krachtig genoeg. Het huidige Starship-ontwerp is ontworpen voor transport van maximaal 100 mensen.

In maart 2019 werden de mallen die voor de productie van een koolstofvezel Starship waren gemaakt gesloopt en het huurcontract voor het aanvankelijke productieterrein in de haven van Los Angeles beëindigd.[21]

Daadwerkelijke ontwikkeling[bewerken]

Een belangrijke stap richting de BFR was de ontwikkeling van de Falcon Heavy. Deze raket gebruikt namelijk ook een grote hoeveelheid (27) raketmotoren die in een goeie sequentie moeten starten. Aan de vooravond van de eerste Falcon Heavy lancering meldde Musk dat de geplande bemande vlucht om de Maan met Falcon Heavy-Dragon 2-combinatie met aanboord twee ruimtetoeristen is uitgesteld en omgeboekt naar de BFR. De ontwikkeling van de BFR zou veel voorspoediger verlopen dan verwacht en er wordt geen energie meer gestoken in een Falcon Heavy die geschikt is voor bemande vluchten.

Op de post-launch-persconferentie na de Falcon Heavy demonstratievlucht meldde Musk dat er als alles meezit al in 2019 korte “hoppervluchten” met het ruimteschip gemaakt kunnen worden. Dit zou vanaf de nieuwe South Texas Launch Site in Boca-Chica kunnen gebeuren of vanaf een schip. Een maand later meldde hij op SXSW dat de constructie van het eerste BFR-ruimteschip reeds was aangevangen. Tijdens Satellite show 2018 noemde Gwynne Shotwell het waarschijnlijk dat de BFR in 2020 orbitaal vliegt.[22]

Op 15 maart 2018 kreeg SpaceX toestemming van de autoriteiten om een in ongebruik geraakt terrein met daarop enkele industriële bouwwerken in de haven van Los Angeles te verbouwen tot BFR-fabriek. Het pand zal overigens ook voor het onderhouden van Falcon 9-en-Falcon Heavy-boosters die vanaf Vandenberg AFB zijn gelanceerd worden ingezet en landingsschip Just Read the Instruction ligt in het aangrenzende dok. De BFR wordt daar gebouwd omdat deze te groot zal zijn om over de weg naar de lanceerbases te vervoeren. Dit zal dan ook per schip gaan gebeuren.[23]

Op 9 april 2018 plaatste Musk een foto van een mal op Instagram die aanvankelijk gebruikt zou worden om de koolstofvezel romp van de BFR te bouwen.[24] Bij de presentatie van 17 september 2018 werd een foto van het eerste rompdeel getoond. Inmiddels is duidelijk dat er metaal in plaats van Koolstofvezel gebruikt gaat worden. De bouw van het eerste Starship is anno december 2018 onderweg en met de bouw van de eerste Super Heavy-booster wordt in het voorjaar van 2019 aangevangen[25]. Die mal is door de keuze voor staal inmiddels overbodig geworden en gesloopt.

Op 16 januari 2019 gaf SpaceX aan de bouw van de prototypes in Zuid-Texas (waar ook de Starhopper al wordt gebouwd) uit te voeren. De voorbereiding zoals de productie van de motoren en andere onderdelen gebeurt in Hawthorn.

Op 4 februari 2019 (UTC) werd een Raptor-motor met het voorlopige ontwerp dat aanvankelijk op Starship en Super Heavy zal worden gebruikt opgestart. De motor brandde enkele seconden. Ongeveer twee uur later werd dit herhaald. Drie dagen later werd bij een vervolgtest kamerdruk van 257 Bar en een stuwkracht van 172 metrische ton gehaald. Dat is iets meer dan de minimale druk die voor het lanceren van de BFR benodigd is. Op een week later op 10 februari werd het 20 jaar oude kamerdrukrecord van de RD-180 gebroken en een kamerdruk van 268,9 Bar gehaald. Voor deze test werd nog geen supergekoelde methalox gebruikt.

Testschip “Starhopper”[bewerken]

Eind december 2018 verschenen foto’s van een roestvrijstalen testartikel dat nabij Boca Chica geassembleerd wordt op sociale media. Deze testraket werd in de (sociale) media al gauw onofficieel “Starhopper” genoemd. Andere gebruikte namen zijn “Hoppership” en “Big Falcon Hopper”. In eerste instantie werd vermoed dat dat het om de bouw van een watertoren voor de lanceerinstallatie ging omdat de constructie werd gebouwd door een bedrijf dat in de bouw watertorens is gespecialiseerd. Elon Musk gaf op Twitter enige nadere uitleg. Het test-schip voor hoppervluchten heeft dezelfde diameter als het uiteindelijke Starship maar is wel minder lang. Het wordt met drie Raptors uitgevoerd. Op 9 januari werd het bovenste grote deel van de “Starhopper” op de onderkant geplaatst en werden de contouren zichtbaar. In eerste instantie zitten er Raptors op die uit test-onderdelen zijn opgebouwd. Voor de daadwerkelijke hoppervluchten worden deze vervangen door vluchtwaardige Raptors. Op 5 januari 2019 gaf Musk aan te werken op een schema met de eerste test over vier weken, “wat waarschijnlijk acht weken betekent door onvoorziene technische problemen”.[26] Die technische problemen kwamen al gauw. De neuskegel, die voor de verdere afbouw van de Starhopper weer was gedemonteerd en naast het onderste deel was geplaatst, woei om in een storm en raakte zwaar beschadigd. SpaceX besloot de neuskegel niet te herbouwen. De neuskegel had slechts een esthetische functie.[27] De Starhopper werd op 8 maart naar de lanceerplaats vervoerd.

De eerste vluchten van de Starhopper zullen zeer korte “aangelijnde” sprongetjes zijn van enkele meters. De starhopper is dan nog met ankers en staalkabels aan de grond vast gezet zodat deze zichzelf niet per ongeluk omver kan werpen. Hiervoor is maar één Raptor benodigd die rond 15 maart 2019 in de Starhopper werd gemonteerd.[28] Uit toegewezen vergunningaanvragen is op te maken dat de eerste hoppervluchten al op 20 maart 2019 hadden kunnen beginnen. Vanaf die dag probeerde SpaceX bijna dagelijks de Raptor te starten maar liep tegen problemen door ijsvorming in de brandstofleidingen. Op 4 april om 00:56 UTC lukte lukte het dan toch de Raptor te starten.[29] Twee dagen later werd dit herhaald waarbij de maximale kracht voor een aangelijnde vlucht werd gehaald.[30]

Eerste Starship in aanbouw[bewerken]

In maart 2019 werd ook begonnen met de bouw van het eerste Starship. Deze wordt op dezelfde locatie vlak bij de nederzetting Boca Chica waar de Starhopper werd gebouwd geconstrueerd.

Tweede Starship in aanbouw[bewerken]

Op 14 mei 2019 werd via het internetforum van NasaSpaceFlight bekend dat er in Cocoa, Florida met de bouw van een tweede Starship was begonnen.[31] Dit werd op Twitter bevestigd door Elon Musk.[32] Musk gaf aan de bouw op twee locaties als een competitie tussen twee teams te zien. Beide teams zijn verplicht informatie met elkaar te delen maar de teams zijn niet verplicht elkaars aanbevelingen op te volgen. Zo hoopt Musk erachter te komen wat de beste bouwlocatie en de beste bouwmethode is. Dit Starship wordt gebouwd door het bedrijf Coastal Steel.

Missies[bewerken]

Dear Moon: eerste passagiersvlucht[bewerken]

1rightarrow blue.svg Zie Dear Moon voor het hoofdartikel over dit onderwerp.

De eerste bemande vlucht met de BFR (afgezien van een of meer testvluchten om de Aarde) zal een vlucht om de Maan zijn (vrije terugkeer traject). Op 17 september maakte SpaceX bekend wie de eerste betalende klant voor de BFR zal zijn. De Japanner Yusaku Maezawa (CEO van ZOZO) is met SpaceX overeengekomen om op deze vlucht (tegen betaling van een niet nader bekendgemaakt bedrag) mee te gaan en zes tot acht nog door hem te selecteren topartiesten mee te nemen. De vlucht moet de artiesten inspireren in het kader van een kunstproject genaamd #dearMoon.[33] Verder gaan er een of meer personeelsleden van SpaceX mee, als piloot/astronaut.[34] De vlucht is gepland voor 2023, maar Musk wijst erop dat het ook later kan worden. In 2017 had Maezawa een reis om de maan met de Falcon Heavy en Dragon 2-capsule voor twee personen geboekt die eind 2018 zou moeten plaatsvinden. Deze missie werd geüpgrade naar deze BFR-vlucht zodat SpaceX de Falcon Heavy en Crew Dragon niet hoefde aan te passen voor deep space en vol op de ontwikkeling van de BFR kan inzetten.

Vóór deze eerste bemande vlucht om de maan zal SpaceX eerst een aantal testvluchten uitvoeren: onbemande vluchten om de maan, en bemande om de aarde. De vluchten om de Maan zullen 4 tot 5 dagen duren.

LUVOIR[bewerken]

NASA onderzocht in 2018 de mogelijkheid om de enorme ruimtetelescoop LUVOIR (Large UV/Optical/IR Surveyor) in de jaren 2030 met de BFR te lanceren.[35] Het vrachtruim van de BFR zou echter te klein zijn, zo concludeerde NASA en ze gaan daarom voorlopig uit van een lancering op een SLS Block II[36].

Voorbereiding[bewerken]

Red Dragon[bewerken]

Nog voor de BFR klaar is had SpaceX al onbemande ruimteschepen van het type Dragon 2 naar Mars willen sturen. SpaceX zou voor deze Red Dragon-missies de Falcon Heavy als draagraket gebruiken. De missies moesten vanaf 2020 beginnen om hun technieken te testen en meer over het landen op Mars te leren. Eerdere plannen voor een Red Dragon-missie in 2018 bleken al niet haalbaar en werden uitgesteld tot de volgende lanceermogelijkheid. In de loop van 2017 werd duidelijk dat het landingsgestel van de Dragon 2 dat door het hitteschild naar buiten moest komen niet aan de veiligheidseisen voldeed. Hierop werd besloten dit ontwerp los te laten en tot zeelandingen over te gaan. Bijgevolg betekende dit dat de Red Dragon niet kon doorgaan aangezien er op Mars geen vloeibaar water is. Musk kwam in tussentijd ook tot de conclusie dat een propulsieve landing op Mars met motoren aan de zijkant van het schip niet de beste manier is. Inmiddels is de verkleinde BFR in ontwikkeling en zet Musk daar vol op in.

Falcon 9 als techniek-demonstrator[bewerken]

In een Q&A na de presentatie in 2016 gaf Musk aan in 2017 een nieuwe (definitieve) versie van de Falcon 9 (block 5 uitvoering) te willen introduceren. Velen gingen er toen van uit dat deze de nieuwe krachtiger Raptors zou gebruiken en de basis van de technologie van het ITS zal bewijzen. Dit bleek echter niet het geval, de Falcon 9 block 5 gebruikt net als zijn voorgangers Merlin 1D-motoren maar is aangepast voor veelvuldig en snel hergebruik.

In november 2018 Tweette Elon Musk over het plan om een Falcon 9 tweede trap aan te passen als een mini BFR-schip met een hitteschild en stuurvinnen om zodoende technieken voor de terugkeer in de atmosfeer te testen. Deze tweede trap zou in juni 2019 gereed zijn. Met de overstap naar een roestvrijstalen ontwerp met geforceerde koeling is dit plan van de baan.

Reacties[bewerken]

De reacties op de ITS (2016) ontwerp presentatie waren zowel kritisch, lovend als vol ongeloof. Vooral het formaat werd als onhaalbaar geacht.

Na de BFR presentatie van 2017 was de scepsis een stuk minder. Niet alleen het kleinere formaat, maar ook het feit dat SpaceX sinds 2016 in een zeer hoog tempo was gaan lanceren en sindsdien geen mislukte lancering of landing meer had gehad speelt mee in het gewonnen vertrouwen. Het verdienmodel: betaalbare ruimtevaart door volledige en veelvuldige herbruikbaarheid werd geloofwaardig geacht. De media berichten vooral over “het revolutionaire idee” dat Musk de BFR ook als lijndienst op aarde wil inzetten en de concurrentie met luchtvaartmaatschappijen wil aangaan. Of dat plan ook haalbaar is en op welke termijn wordt overigens wel betwijfeld.

Eerder was er veel scepsis. Zo dachten veel critici dat SpaceX niet in staat is zo'n groot project op tijd te kunnen realiseren. "De voor 2013 beloofde Falcon Heavy vloog in 2016 immers ook nog niet" en veel Falcon 9 vluchten liepen grote vertraging op. Elon Musk bracht daar tegenin dat de Falcon Heavy in eerste instantie een concept was en verbetering van de Falcon 9 meer prioriteit kreeg. De Falcon Heavy kreeg pas een tijdschema toen er klanten voor waren. De BFR heeft echter wel vanaf het begin een strak ontwikkelingsschema. Op sociale media is de term “Elon time” ontstaan. Dit houdt in dat Elon Musk de vroegst mogelijke datum voor voltooiing van een project noemt om enthousiasme te genereren, maar dat het in werkelijkheid veel langer gaat duren omdat er allerlei ontwerpproblemen en tegenslagen tussenkomen.

Ook is er de mening (of hoop) dat de BFR een betaalbaar alternatief voor NASA's Space Launch System en Orion-capsule zou zijn, aangezien de ontwikkeling daarvan enorm vertraagd is en "over budget" is geraakt. Zeker met het BFR concept uit 2017 komen de mogelijkheden van BFR en zwaarste uitvoering van het SLS overeen. Aangezien de BFR herbruikbaar is in tegenstelling tot het SLS zou dit enorm op de lanceerkosten besparen.

Externe Link[bewerken]

Zie ook[bewerken]

Bemande ruimtevaart naar Mars