This image is an illustration of the recursive process of generating a Menger sponge, which is a fractal object. It shows the first three iterations of an infinite process. The illustration was created by using a simple "Lindenmayer system" (L-system).
The number of cubes at a given iteration is , where is the number of iterations performed on the first cube:
Iter.
Cubes
Cumulative Sum
0
1
1
1
20
21
2
400
421
3
8,000
8,421
4
160,000
168,421
5
3,200,000
3,368,421
6
64,000,000
67,368,421
At the start, no iterations have been performed so . The image shows a total of 8,421 cubes (the sum of all four steps).
Dit werk vrijgegeven in het publieke domein door de auteur, Solkoll. Dit is wereldwijd van toepassing.
In sommige landen is dit wettelijk niet mogelijk; in die gevallen geldt: Solkoll staat iedereen toe dit werk voor eender welk doel te gebruiken, zonder enige voorwaarden, tenzij zulke voorwaarden door de wet worden voorgeschreven.
All freaktal images are from self-written tools. Linear fractals from my : "3D IFS studio" and "3D DTIFS" (dragon trees), non-linear IFS from "3D RJIFS" (3D rev Julia).