Bestand:Window function (rectangular).png

Pagina-inhoud wordt niet ondersteund in andere talen.
Uit Wikipedia, de vrije encyclopedie

Oorspronkelijk bestand(2.500 × 1.123 pixels, bestandsgrootte: 83 kB, MIME-type: image/png)


Verplaatst vanaf en.wikipedia naar Commons door Tiaguito.

Beschrijving

Beschrijving rectangular window and frequency response
Datum
Bron Eigen werk
Auteur Bob K (original version), Olli Niemitalo
Toestemming
(Hergebruik van dit bestand)
Public domain Ik, de auteursrechthebbende van dit werk, geef dit werk vrij in het publieke domein. Dit is wereldwijd van toepassing.
In sommige landen is dit wettelijk niet mogelijk; in die gevallen geldt:
Ik sta iedereen toe dit werk voor eender welk doel te gebruiken, zonder enige voorwaarden, tenzij zulke voorwaarden door de wet worden voorgeschreven.
Andere versies
Bestand:Window function and frequency response - Rectangular.svg is een vectorversie van dit bestand. Indien niet van slechtere kwaliteit dient deze gebruikt te worden in plaats van deze rasterafbeelding.

File:Window function (rectangular).png → File:Window function and frequency response - Rectangular.svg

Zie Help:SVG voor meer informatie.

In andere talen
Alemannisch  Bahasa Indonesia  Bahasa Melayu  British English  català  čeština  dansk  Deutsch  eesti  English  español  Esperanto  euskara  français  Frysk  galego  hrvatski  Ido  italiano  lietuvių  magyar  Nederlands  norsk bokmål  norsk nynorsk  occitan  Plattdüütsch  polski  português  português do Brasil  română  Scots  sicilianu  slovenčina  slovenščina  suomi  svenska  Tiếng Việt  Türkçe  vèneto  Ελληνικά  беларуская (тарашкевіца)  български  македонски  нохчийн  русский  српски / srpski  татарча/tatarça  українська  ქართული  հայերեն  বাংলা  தமிழ்  മലയാളം  ไทย  한국어  日本語  简体中文  繁體中文  עברית  العربية  فارسی  +/−
SVG-bestand

Source code
InfoField
The script below generates these .png images:

This script has not been tested in MATLAB. See the individual file histories for the simpler MATLAB scripts that were the basis of this script.

Generation of svg files by minor modification of the script displayed visual artifacts and renderer incompatibilities that could not be easily fixed. The current script fixes the visual artifacts in the png file as a post-processing step. The script generates a semi-transparent grid by taking a weighted average of two images, one with the grid and one without.
 
Deze PNG rasterafbeelding is gemaakt met GNU Octave door Olli Niemitalo

Matlab

function plotWindowLayer (w, N, gridded, wname, wspecifier)
 
  M=32;
  k=0:N-1;
  dr = 120;

  H = abs(fft([w zeros(1,(M-1)*N)]));
  H = fftshift(H);
  H = H/max(H);
  H = 20*log10(H);
  H = max(-dr,H);
 
  figure('Position',[1 1 1200 520])
  subplot(1,2,1)
  set(gca,'FontSize',28)
  area(k,w,'FaceColor', [0 1 1],'edgecolor', [1 1 0],'linewidth', 2)
  xlim([0 N-1])
  if (min(w) >= -0.01)
    ylim([0 1.05])
    set(gca,'YTick', [0 : 0.1 : 1])
    ylabel('amplitude','position',[-16 0.525 0])
  else
    ylim([-1 5])
    set(gca,'YTick', [-1 : 1 : 5])
    ylabel('amplitude','position',[-16 2 0])
  endif
  set(gca,'XTick', [0 : 1/8 : 1]*(N-1))
  set(gca,'XTickLabel',[' 0'; ' '; ' '; ' '; ' '; ' '; ' '; ' '; 'N-1'])
  grid(gridded)
  set(gca,'LineWidth',2)
  set(gca,'gridlinestyle','-')
  xlabel('samples')
  if (strcmp (wspecifier, ""))
    title(cstrcat(wname,' window'))
  else
    title(cstrcat(wname,' window (', wspecifier, ')'))
  endif
  set(gca,'Position',[0.08 0.11 0.4 0.8])
  set(gca,'XColor',[1 0 1])
  set(gca,'YColor',[1 0 1])
  
  subplot(1,2,2)
  set(gca,'FontSize',28)
  h = stem(([1:M*N]-1-M*N/2)/M,H,'-');
  set(h,'BaseValue',-dr)
  ylim([-dr 6])
  set(gca,'YTick', [0 : -10 : -dr])
  set(findobj('Type','line'),'Marker','none','Color',[0 1 1])
  xlim([-M*N/2 M*N/2]/M)
  grid(gridded)
  set(findobj('Type','gridline'),'Color',[.871 .49 0])
  set(gca,'LineWidth',2)
  set(gca,'gridlinestyle','-')
  ylabel('decibels')
  xlabel('bins')
  title('Frequency response')
  set(gca,'Position',[0.59 0.11 0.4 0.8])
  set(gca,'XColor',[1 0 1])
  set(gca,'YColor',[1 0 1])

endfunction

function plotWindow (w, wname, wspecifier = "", wfilespecifier = "")

  if (strcmp (wfilespecifier, ""))
    wfilespecifier = wspecifier;
  endif

  N = size(w)(2);
  B = N*sum(w.^2)/sum(w)^2   % noise bandwidth (bins), set N = 4096 to get an accurate estimate
  
  plotWindowLayer(w, N, "on", wname, wspecifier);  % "gridded" = "on"
  print temp1.png -dpng "-S2500,1165"
  close
  plotWindowLayer(w, N, "off", wname, wspecifier);  % "gridded" = "off"
  print temp2.png -dpng "-S2500,1165"
  close
% I'm not sure what's going on here, but it looks like the author might have been able
% to save himself some time by using set(gca,"Layer","top") and set(gca,"Layer","bottom").
  I = imread ("temp1.png");
  J = imread ("temp2.png");
  info = imfinfo ("temp1.png");
  w = info.Width;
  c = 1-(double(I(:,1:w/2,1))+2*double(J(:,1:w/2,1)))/(255*3);
  m = 1-(double(I(:,1:w/2,2))+2*double(J(:,1:w/2,2)))/(255*3);
  y = 1-(double(I(:,1:w/2,3))+2*double(J(:,1:w/2,3)))/(255*3);
  c = ((c != m) | (c != y)).*(c > 0).*(1-m-y);
  I(:,1:w/2,1) = 255*(1-c-m-y + 0*m + 0*y + 0*c);
  I(:,1:w/2,2) = 255*(1-c-m-y + 0*m + 0*y + 0.4*c);
  I(:,1:w/2,3) = 255*(1-c-m-y + 0*m + 0*y + 0.6*c);
  c = 1-(double(I(:,w/2+1:w,1))+2*double(J(:,w/2+1:w,1)))/(255*3);
  m = 1-(double(I(:,w/2+1:w,2))+2*double(J(:,w/2+1:w,2)))/(255*3);
  y = 1-(double(I(:,w/2+1:w,3))+2*double(J(:,w/2+1:w,3)))/(255*3);
  c = ((c != m) | (c != y)).*c;
  I(:,w/2+1:w,1) = 255*(1-c-m-y + 0*m + 0*y + 0.8710*c);
  I(:,w/2+1:w,2) = 255*(1-c-m-y + 0*m + 0*y + 0.49*c);
  I(:,w/2+1:w,3) = 255*(1-c-m-y + 0*m + 0*y + 0*c);
  if (strcmp (wfilespecifier, ""))
    imwrite (I, cstrcat('Window function and frequency response - ', wname, '.png'));
  else
    imwrite (I, cstrcat('Window function and frequency response - ', wname, ' (', wfilespecifier, ').png'));
  endif
  
endfunction

N=128;
k=0:N-1;

w = 0.42 - 0.5*cos(2*pi*k/(N-1)) + 0.08*cos(4*pi*k/(N-1));
plotWindow(w, "Blackman")

w = 0.355768 - 0.487396*cos(2*pi*k/(N-1)) + 0.144232*cos(4*pi*k/(N-1)) -0.012604*cos(6*pi*k/(N-1));
plotWindow(w, "Nuttall", "continuous first derivative")

w = 1 - 1.93*cos(2*pi*k/(N-1)) + 1.29*cos(4*pi*k/(N-1)) -0.388*cos(6*pi*k/(N-1)) +0.032*cos(8*pi*k/(N-1));
plotWindow(w, "Flat top")

w = 1 - 1.93*cos(2*pi*k/(N-1)) + 1.29*cos(4*pi*k/(N-1)) -0.388*cos(6*pi*k/(N-1)) +0.028*cos(8*pi*k/(N-1));
plotWindow(w, "SRS flat top")

w = ones(1,N);
plotWindow(w, "Rectangular")

w = (N/2 - abs([0:N-1]-(N-1)/2))/(N/2);
plotWindow(w, "Triangular")

w = 0.5 - 0.5*cos(2*pi*k/(N-1));
plotWindow(w, "Hann")

w = 0.53836 - 0.46164*cos(2*pi*k/(N-1));
plotWindow(w, "Hamming", "alpha = 0.53836")

alpha = 0.5;
w = ones(1,N);
n = -(N-1)/2 : -alpha*N/2;
L = length(n);
w(1:L) = 0.5*(1+cos(pi*(abs(n)-alpha*N/2)/((1-alpha)*N/2)));
w(N : -1 : N-L+1) = w(1:L);
plotWindow(w, "Tukey", "alpha = 0.5")

w = sin(pi*k/(N-1));
plotWindow(w, "Cosine")

w = sinc(2*k/(N-1)-1);
plotWindow(w, "Lanczos")

w = ((N-1)/2 - abs([0:N-1]-(N-1)/2))/((N-1)/2);
plotWindow(w, "Bartlett")

sigma = 0.4;
w = exp(-0.5*( (k-(N-1)/2)/(sigma*(N-1)/2) ).^2);
plotWindow(w, "Gaussian", "sigma = 0.4")

w = 0.62 -0.48*abs(k/(N-1) -0.5) +0.38*cos(2*pi*(k/(N-1) -0.5));
plotWindow(w, "Bartlett–Hann")

alpha = 2;
w = besseli(0,pi*alpha*sqrt(1-(2*k/(N-1) -1).^2))/besseli(0,pi*alpha);
plotWindow(w, "Kaiser", "alpha = 2")

alpha = 3;
w = besseli(0,pi*alpha*sqrt(1-(2*k/(N-1) -1).^2))/besseli(0,pi*alpha);
plotWindow(w, "Kaiser", "alpha = 3")

tau = N-1;
epsilon = 0.1;
t_cut = tau * (0.5 - epsilon);
T_in = abs(k - 0.5 * tau);
z_exp = ((t_cut - 0.5 * tau) ./ (T_in - t_cut) + (t_cut - 0.5 * tau) ./ (T_in - 0.5 * tau));
sigma =  (T_in < 0.5 * tau) ./ (exp(z_exp) + 1);        
w = 1 * (T_in <= t_cut) + sigma .* (T_in > t_cut);
plotWindow(w, "Planck-taper", "epsilon = 0.1")

w = 0.35875 - 0.48829*cos(2*pi*k/(N-1)) + 0.14128*cos(4*pi*k/(N-1)) -0.01168*cos(6*pi*k/(N-1));
plotWindow(w, "Blackman-Harris")

w = 0.3635819 - 0.4891775*cos(2*pi*k/(N-1)) + 0.1365995*cos(4*pi*k/(N-1)) -0.0106411*cos(6*pi*k/(N-1));
plotWindow(w, "Blackman-Nuttall")

w = 1 - 1.93*cos(2*pi*k/(N-1)) + 1.29*cos(4*pi*k/(N-1)) -0.388*cos(6*pi*k/(N-1)) +0.032*cos(8*pi*k/(N-1));
plotWindow(w, "Flat top")

tau = (N/2);
w = exp(-abs(k-(N-1)/2)/tau);
plotWindow(w, "Exponential", "tau = N/2", "half window decay")

tau = (N/2)/(60/8.69);
w = exp(-abs(k-(N-1)/2)/tau);
plotWindow(w, "Exponential", "tau = (N/2)/(60/8.69)", "60dB decay")

alpha = 2;
w = 1/2*(1 - cos(2*pi*k/(N-1))).*exp(alpha*abs(N-2*k-1)/(1-N));
plotWindow(w, "Hann-Poisson", "alpha = 2")

Broncode
InfoField

Octave

Source code
function plotWindowLayer (w, N, gridded, wname, wspecifier)
 
  M=32;
  k=0:N-1;
  dr = 120;

  H = abs(fft([w zeros(1,(M-1)*N)]));
  H = fftshift(H);
  H = H/max(H);
  H = 20*log10(H);
  H = max(-dr,H);
 
  figure('Position',[1 1 1200 520])
  subplot(1,2,1)
  set(gca,'FontSize',28)
  area(k,w,'FaceColor', [0 1 1],'edgecolor', [1 1 0],'linewidth', 2)
  xlim([0 N-1])
  if (min(w) >= -0.01)
    ylim([0 1.05])
    set(gca,'YTick', [0 : 0.1 : 1])
    ylabel('amplitude','position',[-16 0.525 0])
  else
    ylim([-1 5])
    set(gca,'YTick', [-1 : 1 : 5])
    ylabel('amplitude','position',[-16 2 0])
  endif
  set(gca,'XTick', [0 : 1/8 : 1]*(N-1))
  set(gca,'XTickLabel',[' 0'; ' '; ' '; ' '; ' '; ' '; ' '; ' '; 'N-1'])
  grid(gridded)
  set(gca,'LineWidth',2)
  set(gca,'gridlinestyle','-')
  xlabel('samples')
  if (strcmp (wspecifier, ""))
    title(cstrcat(wname,' window'))
  else
    title(cstrcat(wname,' window (', wspecifier, ')'))
  endif
  set(gca,'Position',[0.08 0.11 0.4 0.8])
  set(gca,'XColor',[1 0 1])
  set(gca,'YColor',[1 0 1])
  
  subplot(1,2,2)
  set(gca,'FontSize',28)
  h = stem(([1:M*N]-1-M*N/2)/M,H,'-');
  set(h,'BaseValue',-dr)
  ylim([-dr 6])
  set(gca,'YTick', [0 : -10 : -dr])
  set(findobj('Type','line'),'Marker','none','Color',[0 1 1])
  xlim([-M*N/2 M*N/2]/M)
  grid(gridded)
  set(findobj('Type','gridline'),'Color',[.871 .49 0])
  set(gca,'LineWidth',2)
  set(gca,'gridlinestyle','-')
  ylabel('decibels')
  xlabel('bins')
  title('Frequency response')
  set(gca,'Position',[0.59 0.11 0.4 0.8])
  set(gca,'XColor',[1 0 1])
  set(gca,'YColor',[1 0 1])

endfunction

function plotWindow (w, wname, wspecifier = "", wfilespecifier = "")

  if (strcmp (wfilespecifier, ""))
    wfilespecifier = wspecifier;
  endif

  N = size(w)(2);
  B = N*sum(w.^2)/sum(w)^2   % noise bandwidth (bins), set N = 4096 to get an accurate estimate
  
  plotWindowLayer(w, N, "on", wname, wspecifier);  % "gridded" = "on"
  print temp1.png -dpng "-S2500,1165"
  close
  plotWindowLayer(w, N, "off", wname, wspecifier);  % "gridded" = "off"
  print temp2.png -dpng "-S2500,1165"
  close
% I'm not sure what's going on here, but it looks like the author might have been able
% to save himself some time by using set(gca,"Layer","top") and set(gca,"Layer","bottom").
  I = imread ("temp1.png");
  J = imread ("temp2.png");
  info = imfinfo ("temp1.png");
  w = info.Width;
  c = 1-(double(I(:,1:w/2,1))+2*double(J(:,1:w/2,1)))/(255*3);
  m = 1-(double(I(:,1:w/2,2))+2*double(J(:,1:w/2,2)))/(255*3);
  y = 1-(double(I(:,1:w/2,3))+2*double(J(:,1:w/2,3)))/(255*3);
  c = ((c != m) | (c != y)).*(c > 0).*(1-m-y);
  I(:,1:w/2,1) = 255*(1-c-m-y + 0*m + 0*y + 0*c);
  I(:,1:w/2,2) = 255*(1-c-m-y + 0*m + 0*y + 0.4*c);
  I(:,1:w/2,3) = 255*(1-c-m-y + 0*m + 0*y + 0.6*c);
  c = 1-(double(I(:,w/2+1:w,1))+2*double(J(:,w/2+1:w,1)))/(255*3);
  m = 1-(double(I(:,w/2+1:w,2))+2*double(J(:,w/2+1:w,2)))/(255*3);
  y = 1-(double(I(:,w/2+1:w,3))+2*double(J(:,w/2+1:w,3)))/(255*3);
  c = ((c != m) | (c != y)).*c;
  I(:,w/2+1:w,1) = 255*(1-c-m-y + 0*m + 0*y + 0.8710*c);
  I(:,w/2+1:w,2) = 255*(1-c-m-y + 0*m + 0*y + 0.49*c);
  I(:,w/2+1:w,3) = 255*(1-c-m-y + 0*m + 0*y + 0*c);
  if (strcmp (wfilespecifier, ""))
    imwrite (I, cstrcat('Window function and frequency response - ', wname, '.png'));
  else
    imwrite (I, cstrcat('Window function and frequency response - ', wname, ' (', wfilespecifier, ').png'));
  endif
  
endfunction

N=128;
k=0:N-1;

w = 0.42 - 0.5*cos(2*pi*k/(N-1)) + 0.08*cos(4*pi*k/(N-1));
plotWindow(w, "Blackman")

w = 0.355768 - 0.487396*cos(2*pi*k/(N-1)) + 0.144232*cos(4*pi*k/(N-1)) -0.012604*cos(6*pi*k/(N-1));
plotWindow(w, "Nuttall", "continuous first derivative")

w = 1 - 1.93*cos(2*pi*k/(N-1)) + 1.29*cos(4*pi*k/(N-1)) -0.388*cos(6*pi*k/(N-1)) +0.032*cos(8*pi*k/(N-1));
plotWindow(w, "Flat top")

w = 1 - 1.93*cos(2*pi*k/(N-1)) + 1.29*cos(4*pi*k/(N-1)) -0.388*cos(6*pi*k/(N-1)) +0.028*cos(8*pi*k/(N-1));
plotWindow(w, "SRS flat top")

w = ones(1,N);
plotWindow(w, "Rectangular")

w = (N/2 - abs([0:N-1]-(N-1)/2))/(N/2);
plotWindow(w, "Triangular")

w = 0.5 - 0.5*cos(2*pi*k/(N-1));
plotWindow(w, "Hann")

w = 0.53836 - 0.46164*cos(2*pi*k/(N-1));
plotWindow(w, "Hamming", "alpha = 0.53836")

alpha = 0.5;
w = ones(1,N);
n = -(N-1)/2 : -alpha*N/2;
L = length(n);
w(1:L) = 0.5*(1+cos(pi*(abs(n)-alpha*N/2)/((1-alpha)*N/2)));
w(N : -1 : N-L+1) = w(1:L);
plotWindow(w, "Tukey", "alpha = 0.5")

w = sin(pi*k/(N-1));
plotWindow(w, "Cosine")

w = sinc(2*k/(N-1)-1);
plotWindow(w, "Lanczos")

w = ((N-1)/2 - abs([0:N-1]-(N-1)/2))/((N-1)/2);
plotWindow(w, "Bartlett")

sigma = 0.4;
w = exp(-0.5*( (k-(N-1)/2)/(sigma*(N-1)/2) ).^2);
plotWindow(w, "Gaussian", "sigma = 0.4")

w = 0.62 -0.48*abs(k/(N-1) -0.5) +0.38*cos(2*pi*(k/(N-1) -0.5));
plotWindow(w, "Bartlett–Hann")

alpha = 2;
w = besseli(0,pi*alpha*sqrt(1-(2*k/(N-1) -1).^2))/besseli(0,pi*alpha);
plotWindow(w, "Kaiser", "alpha = 2")

alpha = 3;
w = besseli(0,pi*alpha*sqrt(1-(2*k/(N-1) -1).^2))/besseli(0,pi*alpha);
plotWindow(w, "Kaiser", "alpha = 3")

tau = N-1;
epsilon = 0.1;
t_cut = tau * (0.5 - epsilon);
T_in = abs(k - 0.5 * tau);
z_exp = ((t_cut - 0.5 * tau) ./ (T_in - t_cut) + (t_cut - 0.5 * tau) ./ (T_in - 0.5 * tau));
sigma =  (T_in < 0.5 * tau) ./ (exp(z_exp) + 1);        
w = 1 * (T_in <= t_cut) + sigma .* (T_in > t_cut);
plotWindow(w, "Planck-taper", "epsilon = 0.1")

w = 0.35875 - 0.48829*cos(2*pi*k/(N-1)) + 0.14128*cos(4*pi*k/(N-1)) -0.01168*cos(6*pi*k/(N-1));
plotWindow(w, "Blackman-Harris")

w = 0.3635819 - 0.4891775*cos(2*pi*k/(N-1)) + 0.1365995*cos(4*pi*k/(N-1)) -0.0106411*cos(6*pi*k/(N-1));
plotWindow(w, "Blackman-Nuttall")

w = 1 - 1.93*cos(2*pi*k/(N-1)) + 1.29*cos(4*pi*k/(N-1)) -0.388*cos(6*pi*k/(N-1)) +0.032*cos(8*pi*k/(N-1));
plotWindow(w, "Flat top")

tau = (N/2);
w = exp(-abs(k-(N-1)/2)/tau);
plotWindow(w, "Exponential", "tau = N/2", "half window decay")

tau = (N/2)/(60/8.69);
w = exp(-abs(k-(N-1)/2)/tau);
plotWindow(w, "Exponential", "tau = (N/2)/(60/8.69)", "60dB decay")

alpha = 2;
w = 1/2*(1 - cos(2*pi*k/(N-1))).*exp(alpha*abs(N-2*k-1)/(1-N));
plotWindow(w, "Hann-Poisson", "alpha = 2")

Bijschriften

Beschrijf in één regel wat dit bestand voorstelt

Items getoond in dit bestand

beeldt af

image/png

Bestandsgeschiedenis

Klik op een datum/tijd om het bestand te zien zoals het destijds was.

Datum/tijdMiniatuurAfmetingenGebruikerOpmerking
huidige versie9 feb 2013 18:48Miniatuurafbeelding voor de versie van 9 feb 2013 18:482.500 × 1.123 (83 kB)Olli NiemitaloAntialiasing, layout changes, larger font
17 dec 2005 23:07Miniatuurafbeelding voor de versie van 17 dec 2005 23:071.038 × 419 (7 kB)Tiaguito~commonswikifile size. color source: http://en.wikipedia.org/wiki/Window_Function
17 dec 2005 22:48Miniatuurafbeelding voor de versie van 17 dec 2005 22:481.038 × 419 (8 kB)Tiaguito~commonswikisource: http://en.wikipedia.org/wiki/Window_Function author: http://en.wikipedia.org/wiki/User:Bob_K

Geen enkele pagina gebruikt dit bestand.

Globaal bestandsgebruik

De volgende andere wiki's gebruiken dit bestand: