Ehrenfestparadox
De Ehrenfest-paradox doet zich voor als men een ronddraaiende cirkel beschrijft met speciale relativiteit.
In zijn oorspronkelijke formulering, zoals door Paul Ehrenfest in 1909 in het Physikalische Zeitschrift voorgesteld, beschrijft hij een ideaal starre cilinder die om zijn symmetrieas draait. De straal staat altijd loodrecht op zijn bewegingsrichting en zou in het bewegende stelsel daarom gelijk moeten zijn aan zijn stilstaande waarde . Maar de omtrek die parallel aan de bewegingsrichting staat en in het mee bewegende stelsel is zou door de lengtecontractie een kleinere waarde moeten hebben dan in het stilstaande stelsel. Dit leidt tot de tegenspraak dat en .
Later hebben vele andere natuurkundigen zich over dit probleem gebogen. Vele oplossingen zijn gevonden en worden vandaag de dag nog bediscussieerd.
Wiskundige beschrijving
Een cirkel met straal draait met een hoeksnelheid .
Wiskundig gezien zou de omtrek dan gelijk zijn aan
Relativistisch gezien is de omtrek gelijk aan
- waar
Hier is de lichtsnelheid, omdat de omtrek in de bewegingsrichting staat.
Merk op dat wanneer . Dit zou betekenen dat de (relativistische) verhouding tussen omtrek en diameter
- voor is.
Normaliter (wiskundig) hebben alle cirkels de eigenschap dat de verhouding tussen omtrek en diameter
- is.
Dit is een paradox, een starre cirkel, die ronddraait voldoet niet meer aan de geometrie van de wiskundige cirkel.
Zie ook
- Meetkundige eigenschappen van een cirkel
- Speciale relativiteitstheorie
- Algemene relativiteitstheorie
- Lorentz-contractie
Externe links
- The Rigid Rotating Disk in Relativity, by Michael Weiss (1995), from the sci.physics FAQ.
- The Resolution of the Ehrenfest Paradox, by Jaroslav Hynecek, from the General Science Journal