Levi-civita-symbool

Uit Wikipedia, de vrije encyclopedie
(Doorverwezen vanaf Levi-Civita-symbool)
Ga naar: navigatie, zoeken
Visuele weergave van het Levi-Civita-symbool.

Het levi-civita-symbool is een discrete functie van drie variabelen. Deze functie wordt genoteerd als en kan drie waarden aannemen: -1, 0, +1. Ze wordt gedefinieerd als volgt:

Een permutatie is (on)even als het geschreven kan worden als een (on)even aantal transposities.

Er bestaat ook een tensor-notatie voor het levi-civita-symbool:

met , en eenheidsvectoren uit een rechtshandig coördinaten systeem.

Het levi-civita-symbool is dus te interpreteren als een antisymmetrische tensor.

Als we de componenten van noteren als , en , dan kunnen we dus ook volgende notatie gebruiken:

.

Deze functie is genoemd naar de Italiaanse wiskundige Tullio Levi-Civita.

Er is ook een rechtstreeks verband met de kronecker-delta dat blijkt uit volgende formules:

,
.

De functie van drie variabelen kan probleemloos uitgebreid worden naar een functie van variabelen. Hierbij behouden we gewoon de originele definitie:

Zie ook[bewerken]