Overleg:Criterium van Eisenstein
Onderwerp toevoegenUiterlijk
Laatste reactie: 1 jaar geleden door Lieven Smits in het onderwerp Bewijs
Bewijs
[brontekst bewerken]Uit het ongerijmde. Stel er zijn niet-constante polynomen en met gehele coëfficienten, zo dat . Dan is[bron?]
Maar dan moeten zowel als modulo een eenterm zijn, zodat in het bijzonder hun constante termen door kunnen worden gedeeld, dus moet door kunnen worden gedeeld, maar dat is in tegenspraak met de voorwaarden. ChristiaanPR (overleg) 16 mei 2023 10:06 (CEST)
- Dit is een correct bewijs dat irreducibel is in Samen met de uitleg dat daaruit ook irreducibiliteit in volgt, is dit ongeveer het bewijs dat op de Engelstalige wikipedia staat. Lieven Smits (overleg) 16 mei 2023 14:30 (CEST)
- Op Wikipedia wordt aanvaard dat wiskundige bewijzen geen bronvermelding hebben, op voorwaarde dat ze op zichzelf staan. Voor de bewering is geen inductiestap nodig: gewoon het gegeven dat alle coëfficienten met uitzondering van de hoogstegraadscoëfficient deelbaar zijn door
- Ik stel voor het bewijs in eer te herstellen, eventueel met expliciete herhaling van dat ene gegeven. Lieven Smits (overleg) 16 mei 2023 20:46 (CEST)
- Lieven, Het is geen correct bewijs, omdat het niet is gezegd dat de coëfficienten van het product van en in tegen elkaar wegvallen. Dat moet nog worden bewezen. Dit bewijs geeft alleen de richting aan, maar is niet volledig. groeten ChristiaanPR (overleg) 17 mei 2023 00:05 (CEST)
- Ik begrijp je bezwaar niet goed. Je kunt elke stap in een wiskundig bewijs natuurlijk verder uitschrijven, maar er staan in het huidige bewijs geen redeneerfouten. 'Onvolledig' is in die context een erg subjectieve appreciatie en verwijdering een (te) drastische maatregel.
- In de ring Z_p[x] der veeltermen in 1 veranderlijke met coefficienten in het lichaam Z_p hebben we dat het product van f(x) en q(x) een eenterm is. Dan moeten de twee afzonderlijke veeltermen in die ring ook eentermen zijn, en dus hebben die afzonderlijke veeltermen in de oorspronkelijke ring Z[x] als coefficienten alleen maar veelvouden van p met uitzondering van hun hoogstegraadscoefficienten. Hun graden zijn allebei groter dan 0, dus hun nuldegraadscoefficienten zijn allebei deelbaar door p. Lieven Smits (overleg) 25 mei 2023 23:19 (CEST)
- Lieven, Het is geen correct bewijs, omdat het niet is gezegd dat de coëfficienten van het product van en in tegen elkaar wegvallen. Dat moet nog worden bewezen. Dit bewijs geeft alleen de richting aan, maar is niet volledig. groeten ChristiaanPR (overleg) 17 mei 2023 00:05 (CEST)