Overleg:Stator

Pagina-inhoud wordt niet ondersteund in andere talen.
Uit Wikipedia, de vrije encyclopedie

Dit artikel loopt niet lekker. Ik wil het niet wijzigen, omdat ik niet weet hoe het technisch precies in elkaar zit. Serassot 18 jan 2004 21:51 (CET)[reageer]

Mee eens, maar ik heb ondanks gebrek aan kennis toch maar een poging gewaagd. Rob Hooft 18 jan 2004 22:07 (CET)[reageer]

Indien je een stator uit zijn geheel zou bouwen, dan zal de motor temperatuur binnen enkele minuten zo groot zijn dat de motor blijvende schade ondervindt. Anderzijds zal de energie nodig om deze wervelstromen te laten vloeien uit het net moeten komen. Hierdoor zal zelf de nullaststroom van de motor veel groter zijn de de nominale stroom (stroom bij belaste motor) van de motor. Met gevaar op beschadiging van de stator wikkelingen. Schrijven dat het rendement van de motor minder goed zal zijn is dus gewoon onrealistisch Daar de motor hoegenaamd niet behoorlijk zal kunnen werken, de stroom in de stator veel te groot zal zijn, zelf bij nullast. (Het effect van wervelstromen heb ik praktisch uitgetest op een transfo met massieve kern. Finaal heb je dan geen transfo meer maar een kookplaat.)


Hier nog aan toe voegend. De wikkelingen liggen niet omheen het ijzer, ze zitten in het ijzer verwerkt, namelijk in de stator gleuven dit kan alleen maar bevestigen, maar ja


Het is zelfs mogelijk om dit om te keren zodat de rotor om de stator heen draait Ik ken dit principe bij 1 merk liftmachine namelijk Alois Kaspar.

Van de site van Kasper:


[1] Principle of the external rotor traction machine


The external rotor traction machine is characterised by an externally fitted motor and an internal stator winding. Here, too, the same physical connections apply as with conventional internal rotor motors but one achieves a greater diameter of air-gap and a greatly proportionate smaller overall length with the same motor output which leads to a considerably more compact design.

The Kasper external rotor traction machines are not so compact just because of the shorter overall length but also because of the clutch elements which are no longer required, the separate brake disks which are no longer required and the fact that the external rotor motors are an integral part of the drive mechanism.

These connections form part of 6 patents the contents of which can be summarised as follows:


1) Because the external rotor motor was designed without its own bearing it is almost maintenance-free. In addition the worm is rigidly connected to the rotor housing so there is no need for any clutch parts (DBP 1236750 and DBP 1283474). There is no need for either a motor alignment nor a motor substructure.


The rotor housing also serves as an emergency handwheel and brake disk (DBP1271934)


The motor retainer is connected to the drive housing. (DBP1276303)


Depending on the number of switching actuations the built-on fan blower together with the arrangement of the air flow channels produce cooling of the bearing and cooling when the elevator is stationary, and at the same time also cool the drive bearing near the motor, the motor, the handwheel and the braking surface. (DBP1288773 and DBP280518) The reduction of the motor and worm bearings exclusively to a worm two-point bearing creates a vibration-free, smooth ride. The result is a compact design which provides a high degree of comfort.

Whilst developing the external rotor traction machine for frequency regulation the effect of the self-oscillation mass of the external rotor was considerably reduced with the help of several measures:


The existing grey cast iron rotor casing was replaced by a one-piece aluminium die cast rotor casing in which the rotor diameter could be reduced by some 20% when compared to the 2-speed motor with the same output. The result was the reduction of the oscillation mass to approximately 1/10 of the comparable rotor with multiple speed drives as well as a small sized motor and thus even more compact drive mechanisms.


The frequency-controlled external rotor drive is mainly supplied as a 6 pole motor. When operated at a lower speed the effect of the oscillation mass on the power during the acceleration phases is reduced, which results in a considerably quieter and vibration-free ride.


In order to reach the required speed multi-geared worms had to be manufactured due to the lower revolutions which results in considerably improved efficiency and the drive operates with a lower motor output. The frequency controlled external rotor traction machine combines the benefits of frequency control with regard to energy savings in an ideal way with the benefits of the external rotor design with regard to smooth running and compactness.