Stelling van Routh

Uit Wikipedia, de vrije encyclopedie
Naar navigatie springen Naar zoeken springen
Routh theorem v2.svg

De stelling van Routh, genoemd naar Edward Routh, is een wiskundige stelling in de driehoeksmeetkunde.

Gegeven is een driehoek ABC met oppervlakte . We verdelen de drie zijden van de driehoek in twee delen door de punten D, E en F te plaatsen op de zijden [BC], [AC] en [AB] of op het verlengde van de zijden. De verhoudingen van de twee segmenten van elke zijde noemen we r, s en t:

(de verhoudingen krijgen een minteken wanneer de twee segmenten verschillende richting hebben)

Wanneer we nu de hoektransversalen [AD], [BE] en [CF] trekken vanuit de punten D, E en F naar de tegenoverliggende hoekpunten A, B en C, vormen die een ingesloten driehoek GHI (rood aangeduid in de figuur).

De stelling van Routh stelt dat de oppervlakte van deze driehoek gelijk is aan:

De stelling van Ceva en de stelling van Menelaos zijn een bijzonder geval van deze stelling van Routh:

  • wanneer de drie hoektransversalen een enkel snijpunt hebben is de oppervlakte van de omsloten driehoek gelijk aan nul; dat wil zeggen dat , zoals de stelling van Ceva zegt;
  • wanneer liggen volgens de stelling van Menelaos de punten D, E en F op één lijn.

Externe links[bewerken]