Naar inhoud springen

Voortplantingssnelheid

Uit Wikipedia, de vrije encyclopedie
(Doorverwezen vanaf Fasesnelheid)

De voortplantingssnelheid van een golf is de snelheid waarmee de golf zich door de ruimte voortplant. Golfvoortplanting treedt bijvoorbeeld op bij licht, geluid en golven aan het wateroppervlak. Licht en andere elektromagnetische golven kunnen zich door vacuüm voortplanten, maar de meeste typen golven hebben een medium (tussenstof) nodig: bij geluid is dat lucht of een ander samendrukbaar materiaal, en bij watergolven is dat een wateroppervlak.

De voortplantingssnelheid is afhankelijk van het medium en het type golf. De voortplantingssnelheid van licht en andere elektromagnetische golven, de lichtsnelheid, is in vacuüm een universele constante. In andere media is de waarde van de lichtsnelheid niet alleen lager dan in vacuüm, maar verschilt ook van medium tot medium afhankelijk van de brekingsindex en kan zelfs bij anisotrope media in verschillende richtingen andere waarden hebben. Ook is de lichtsnelheid voor media met dispersie frequentie-afhankelijk. De geluidssnelheid is eveneens afhankelijk van het soort materiaal en de dichtheid, en de snelheid van een golf op het wateroppervlak hangt onder meer af van de diepte en de golflengte.

De voortplantingssnelheid van een golf is in principe de snelheid waarmee een golffront zich uitbreidt. De moeilijkheid daarbij is dat een golf vaak een superpositie is, waarvan de afzonderlijke componenten verschillende voorplantingssnelheden kunnen hebben.

Harmonische golf

[bewerken | brontekst bewerken]

Een harmonische golf in één richting, zeg de -richting, met amplitude en hoekfrequentie [] wordt beschreven door de uitwijking:

Daarin is de voortplantingssnelheid.

Men schrijft vaak:

,

met het (cirkel)golfgetal in .

In startpunt is met periode en op starttijd is met golflengte .

Tussen de voortplantingssnelheid en andere grootheden bestaan de volgende betrekkingen:

Hierin is de golflengte, de periode en de frequentie.

Fase- en groepssnelheid

[bewerken | brontekst bewerken]

Doordat een golf meestal bestaat uit een superpositie van harmonische golven, kunnen de snelheden van de afzonderlijke componenten uiteenlopen. Men maakt daarom onderscheid in fasesnelheid en groepssnelheid. De fasesnelheid is de snelheid waarmee een punt op de golf met vaste fase zich voortplant en de groepssnelheid de snelheid waarmee de omhullende van de golf zich voortplant.

Om de begrippen te verduidelijken beschouwen we een golf die bestaat uit twee harmonische golven, voor het gemak elk met amplitude 1 en fasehoek 0, voor beschreven door:

met cirkelfrequenties en (cirkel)golfgetallen ().

De superpositie van beide is:

waarin:

en

Rood blokje met fasesnelheid, groene punten met groepssnelheid: 2 op 1. Rimpels op wateroppervlak, -diepte is groot.

We zien daarin twee golfverschijnselen, een met de gemiddelde cirkelfrequentie van beiden en voortplantingssnelheid , de fasesnelheid, en een ander met als cirkelfrequentie het halve verschil van beiden en voortplantingssnelheid , de groepssnelheid. Voor ons oog verschijnt een snel fluctuerende golf met voortplantingssnelheid de fasesnelheid, waarvan de amplitude langzaam varieert volgens de tweede golf die de omhullende van de golf bepaalt. Deze omhullende plant zich voort met de groepssnelheid.

We drukken de beide snelheden uit in de basisgrootheden cirkelfrequentie en voortplantingssnelheid:

Anders geschreven:

De fasesnelheid is dus het met de frequenties gewogen harmonisch gemiddelde van de beide snelheden en de groepssnelheid het gewogen harmonisch verschil.

Daaruit zien we dat in het geval de voortplantingssnelheden en van de golfcomponenten gelijk zijn (amplitude wordt 2?), ook de fasesnelheid en de groepssnelheid daaraan gelijk zijn.

Fase- en groepssnelheid bij kleurschifting

[bewerken | brontekst bewerken]

Interessant wordt het als er van dispersie sprake is, zodat de beide voortplantingssnelheden verschillen. Dan gaan ook de fase- en groepssnelheid van elkaar verschillen. In de animatie is dit duidelijk te zien.

Het algemene geval is moeilijker te analyseren. Een golfpakket kan beschreven worden door:

Als het golfpakket min of meer pulsvormig is, zal het spectrum tamelijk scherp gepiekt zijn rondom een waarde . Het golfgetal kan dan ontwikkeld worden rond deze waarde:

Dat levert als benadering:

De eerste term laat een golf zien met cirkelfrequentie , de centrale (verwachte) waarde van het spectrum. De voortplantingssnelheid daarvan, de fasesnelheid is:

De tweede (de integraal) stelt de groep voor. De voortplantingssnelheid daarvan, de groepssnelheid, is:

De groepssnelheid wordt algemeen gedefinieerd als:

In het bovenstaande discrete geval van twee harmonische golven, moet dit als het genoemde differentiequotiënt () geïnterpreteerd worden.

Daarmee kan de volgende relatie (Rayleigh) afgeleid worden:

Omdat

luidt deze betrekking in termen van de golflengte :