Kronecker-symbool

Uit Wikipedia, de vrije encyclopedie
Ga naar: navigatie, zoeken

In de getaltheorie, een deelgebied van de wiskunde, is het Kronecker-symbool, geschreven als of (a|n), een veralgemening van het Jacobi-symbool voor alle gehele getallen n.

Het Kronecker-symbool werd geïntroduceerd door Leopold Kronecker.

Definitie[bewerken]

Laat n een niet-nulzijnd geheel getal met priemfactorisatie zijn

,

waar u een eenheid (dat wil zeggen, u is 1 of −1), en pi de priemgetallen zijn. Laat a een geheel getal zijn.

Het Kronecker-symbool (a|n) wordt gedefinieerd door

Voor oneven getallen pi, is het getal (a|pi) gewoon get gebruikelijke Legendre-symbool. Dit laat het geval over, waar pi = 2. We definiëren (a'|2) door

Aangezien dit het Jacobi-symbool uitbreidt, is de hoeveelheid (a|u) gewoon 1, wanneer u = 1. Wanneer u = -1, definiëren we dit door

Tenslottte nemen wij

Deze uitbreidingen volstaan om het Kronecker-symbool voor alle geheelgetallige waarden n te definiëren.

Zie ook[bewerken]