Overleg:Wet van Archimedes

Uit Wikipedia, de vrije encyclopedie
Naar navigatie springen Naar zoeken springen

Twee afbeeldingen verwijderd die m.i. niet de Wet van Archimedes demonstreren:

Het volume van het voorwerp is gelijk aan 3 eenheden
Deze afbeelding toont dat het volume van het ondergedompelde voorwerp gelijk is aan het volume van het verplaatste water. Het voorwerp is niet drijvend (het hangt nog aan het touwtje), en dus is er van gewichtsbepaling geen sprake.
Deze munt drijft op water
Deze afbeelding toont dat de munt op het water drijft overduidelijk door oppervlaktespanning. Ook dit is dus geen goed voorbeeld van de Wet van Archimedes. Beter zou het zijn wanneer er wat zeep in het water was gedaan, zodat de oppervlaktespanning sterk wordt gereduceerd. Als het muntje dan nog steeds drijft, is er inderdaad sprake van evenwicht en is dus de Wet van Archimedes geldig. Waarschijnlijk gebruikte Archimedes ook zeep toen hij in bad ging ;-)

Trewal 18 jun 2009 16:03 (CEST)Reply[reageer]


Is het niet beter om te spreken over volume van het ondergedompeld deel van het voorwerp? dat vind ik ook!

Simon Stevin[brontekst bewerken]

Wat is de meerwaarde van de formulering van Simon Stevin - zonder enige verdere uitleg over wie en waarom - van deze wet? (Ok hij is er misschien mee bezig geweest, maar dan moet je dat op z'n minst bij vermelden. En dan nog moet het toch enigszins relevant zijn, er zijn toch talloze wiskundige die zich met dit principe hebben bezig gehouden; waarom zij niet en Stevin wel?) Meglosko (overleg) 30 jan 2012 22:04 (CET)Reply[reageer]

Mee eens. 2x een definitie geven is overbodig. Ik zet het hier neer, mocht later nog de relevantie blijken. [[Simon Stevin]] verwoordde het zo: :''Yder stijflichaems swaerheyt is so veel lichter in t'water dan in de locht, als de swaerheyt des waters met hem evegroot.'' W.D. Sparling (overleg) 25 mei 2015 11:29 (CEST)Reply[reageer]

Archimedes[brontekst bewerken]

Dat verhaal over die kroon rammelt alleen al daardoor dat het volume simpelweg bepaald kn worden uit de stijging van het vloeistofniveau. Madyno (overleg) 5 aug 2022 18:45 (CEST)Reply[reageer]