Uitwendige afgeleide

Uit Wikipedia, de vrije encyclopedie
Naar navigatie springen Naar zoeken springen

In differentiaalmeetkunde, een deelgebied van de wiskunde, breidt de uitwendige afgeleide het concept van de differentiaal van een functie, dat een 1-vorm is, uit naar differentiaalvormen van een hogere graad. De huidige vorm van de uitwendige afgeleide werd geformuleerd door Élie Cartan.