Stelling van Picard-Lindelöf

Uit Wikipedia, de vrije encyclopedie
Ga naar: navigatie, zoeken

In de studie van differentiaalvergelijkingen, een deelgebied van de wiskunde, is de stelling van Picard-Lindelöf, de existentiestelling van Picard of de stelling van Cauchy-Lipschitz een belangrijke stelling over het bestaan en de uniciteit van oplossingen voor bepaalde beginwaardeproblemen.

De stelling is genoemd naar Charles Émile Picard, Ernst Lindelöf, Rudolf Lipschitz en Augustin-Louis Cauchy.

Definitie[bewerken]

Beschouw het beginwaardeprobleem

Stel dat Lipschitz-continu in en continu in is. Dan bestaat er voor enige waarde , een unieke oplossing voor het beginwaardeproblem binnen het bereik

.[1]

Voetnoten[bewerken]

  1. (en) Coddington, Levinson, 1955, Theorem I.3.1