Sclerochronologie

Uit Wikipedia, de vrije encyclopedie
Ga naar: navigatie, zoeken
Schema: Verkrijging van sclerochronologische gegevens uit fossiele skeletresten (vereenvoudigd)

Sclerochronologie omvat in de zoölogie en de paleontologie verschillende methoden voor de analyse van de groei van harde weefsels van gewervelde en ongewervelde dieren, zoals endo- en exoskeletten, tanden en otolieten.

Inleiding[bewerken]

De term is afgeleid van het Griekse woord scleros – hard, chronos – tijd en logos – kennis of wetenschap, en verwijst naar de kennis van de ordening van gebeurtenissen in de tijd op grond van kenmerken van het skelet.

Evenals in de dendrochronologie wordt de (dikte)groei van een skelet-element als een opeenvolging van afzonderlijk groeiperioden (incrementen) beschouwd waarvan met behulp van een opeenvolgende serie analyses (tijdreeksanalyse) uitspraken gedaan kunnen worden over de ontwikkeling van abiotische milieu-omstandigheden en interne groeifactoren. Cyclische veranderingen in de chemie en de microstructuur van het skeletmateriaal, bijvoorbeeld als gevolg van dagelijkse, maandelijkse of jaarlijkse schommelingen van de omgevingsfactoren, zijn in een doorsnede door een skelet-element zichtbaar als een groeipatroon bestaande uit een afwisseling van donkere en lichtere (of hardere en zachtere) banden of lijnen (analoog aan jaarringen van bomen). Sporenelement- en isotopenonderzoek van een representatieve selectie van monsters die in de groeirichting van het onderzochte skelet-element genomen zijn, vormen een nadere bron van informatie voor het sclerochronologische onderzoek die onafhankelijk van de macros- en microscopisch zichtbare groeipatronen is.

Analyse van de individuele groeisnelheid[bewerken]

Uit de jaarlijkse aangroei, die door zones van stilstand in de groei gescheiden kunnen zijn ('groeistops'), kunnen trends in de groei van het individu over een langere periode afgelezen worden. Vergelijking van groeicurven van skeletten van verwante soorten verschaft inzicht in de evolutionaire verandering van de timing in de individuele ontwikkeling (Heterochronie). Het bereiken van geslachtsrijpheid kan gepaard gaan met een plotselinge vertraging van de groei van het skelet die ertoe leidt dat de jongste jaarlijkse groeibanden (annuli) in een bot- of schelpdoorsnede heel klein zijn. Op dat punt gekomen vertoont de groeicurve dan een knik.

Bekende voorbeelden zijn jaargroeibanden in het skelet van koralen of groeiringen in weekdierschelpen (bijvoorbeeld bij de Noordkromp en de Doopvontschelp) en visotoloieten. Zowel de sclerochronologie als de dendrochronologie bestuderen de ontwikkeling van cyclische patronen tijdens individuele levens en reconstrueren de ontwikkeling van milieu en klimaat in ruimte en tijd gebaseerd op de gegevens van zeer veel individuen.

Voorbeelden bij schelpen[bewerken]

Zie ook[bewerken]

Verder lezen[bewerken]

  • Arthur, M.A., Williams, DF and Jones, DS, 1983. Seasonal temperature-salinity changes and thermocline development in the mid-Atlantic Bight as recorded by the isotopic composition of bivalves. Geology 11: 655–659.
  • Craig, G.Y. and Hallam, A., 1963. Size-frequency and growth-ring analyses of Mytilus edulis and Cardium edule, and their palaeoecological significance. Palaeontology 6: 731–750.
  • Davenport, C.B., 1938. Growth lines in fossil pectens as indicators of past climates. Journal of Paleontology 12: 514–515.
  • Dodge, R.E. and Vaisnys, J.R., 1975. Hermatypic coral growth banding as environmental recorder. Nature 258: 706–708.
  • Epplé, V.M., Brey, T., Witbaard, R., Kuhnert, H., Pätzold, J., 2006. Sclerochronological records of Arctica islandica from the inner German Bight. The Holocene, 16(5): 763-769.
  • Epstein, S, Buchsbaum, H, Lowenstam, H and Urey, C, 1953. Revised carbonate-water isotopic temperature scale. Geological Society of America Bulletin. 64: 1315–1326.
  • Evans, J.W., 1972. Tidal growth increments in the cockle Clinocardium nuttalli. Science 176: 416–417.
  • Gagan, M.K., Chivas, AR and Isdale, P. 1994. High-resolution isotopic records from corals using ocean temperature and mass-spawning chronometers. Earth and Planetary Science Lettres 121: 549–558.
  • Grossman, E.L. and Ku, T-L, 1986. Oxygen and carbon isotope fractionation in biogenic aragonite; temperature effects. Chemical Geology, Isotope Geoscience Section 59: 59–74.
  • Hudson, JH, Shinn, EA Halley, RB and Lidz, B, 1976. Sclerochronology: a tool for interpreting past environments. Geology 4: 361–364.
  • Ivany, L.C., Patterson, W.P., and Lohmann, K.C. 2000. Cooler winters as a possible cause of mass extinctions at the Eocene/Oligocene. Nature, v. 407, p. 887-890.
  • Ivany, L.C. , Lohmann, K.C., and Patterson, W.P. 2003. Eocene through Oligocene temperature history of the US Gulf Coastal plain inferred from d18O of fossil otoliths for From Greenhouse to Icehouse - The Marine Eocene-Oligocene Transition, Geological Society of America Special Paper, Prothero, D., Ivany, L., and Nesbitt, E., eds., Columbia University Press, 376 pp.
  • Jones, D.S. and Quitmyer, IR, 1996. Marking time with bivalve shells: oxygen isotopes and season of annual increment formation. Palaios 11: 340–346.
  • Jones, D.S., 1978. Age and growth rate determinations for the Atlantic Surf Clam Spisula solidissima (Bivalvia: Mactracea), based in internal growth lines in shell cross-sections. Marine Biology 47: 63–70.
  • Jones, D.S., 1980. Annual cycle of shell growth increment formation in two continental shelf bivalves and its paleoecologic significance. Paleobiolology. 6: 331–340.
  • Jones, PD, Osborn, TJ and Briffa, KR, 2001: The evolution of climate over the last millennium. Science 292: 662–667.
  • Kaandorp, R.J.G., Vonhof, H.B., Del Busto, C., Wesselingh, F.P., Ganssen, G.M., Marmól, A.E., Romero Pittman, L. and van Hinte, J.E., 2003. Seasonal stable isotope variations of the modern Amazonian fresh water bivalve Anodontites trapesialis. Palaeogeography, Palaeoclimatology, Palaeoecology 194: 339-354.
  • Kaandorp, R.J.G., H.B. Vonhof, F.P. Wesselingh, L. Romero-Pittman, D. Kroon and J.E. van Hinte, 2005. Seasonal Amazonian rainfall variation in the Miocene Climate Optimum. Palaeogeography, Palaeoclimatology, Palaeoecology 221: 1-6.
  • Kaandorp, R.J.G., F.P. Wesselingh, H.B. Vonhof, 2006. Ecological implications from geochemical records of Miocene western Amazonian bivalves. Journal of South American Earth Sciences 21: 54-74.
  • Kaandorp R.J.G., 2007. Lines of Time. Seasonality, climate and environments of the Miocene Pebas Formation in western Amazonia derived from chemical records in molluscan growth-bands. PhD-Thesis, VU Amsterdam, ISBN 978-90-9022201-1, pp. 134.["http://dare.ubvu.vu.nl/bitstream/1871/10974/4/4559.pdf"]
  • Koike, H, 1980. Seasonal dating by growth-line counting of the clam, Meretrix lusoria. University Museum, University of Tokyo Bulletin 18: 1–120.
  • MacFadden, B.J. (Ed.), 2004. Incremental Growth in Vertebrate Skeletal Tissues: Paleobiological and Paleoenvironmental Implications. Palaeogeography, Palaeoclimatology, Palaeoecology 206(3-4): 177-382.
  • Marchitto, T.A., Jones, GA, Goodfriend, GA and Weidman, CR, 2000. Precise temporal correlation of Holocene mollusk shells using sclerchronology. Quaternary Research 53: 236–246.
  • Pannella, G and MacClintock, C. 1968. Biological and environmental rhythms reflected in molluscan shell growth. Paleontological Society Memoirs 42: 64–80.
  • Patterson, W.P. 1998. North American continental seasonality during the last millennium: high-resolution analysis of sagittal otoliths. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 138, no. 1-4, p. 271-303.
  • Patterson, W.P. 1999. Oldest isotopically characterized fish otoliths provide insight to Jurassic continental climate of Europe. Geology, v. 27, no. 3, p. 199-202.
  • Patterson, W.P. 2000. Diachronic changes in growth rate of North Sea fish species in relation to anthropogenic activities: high resolution stable isotope analyses of otoliths. European Union (EU FAIR Programme Report), Project CT97-3462.
  • Pätzold, J, 1984. Growth rhythms recorded in stable isotopes and density bands in the reef coral Porites lobata (Cebu, Philippines). Coral Reefs 3: 87–90.
  • Schöne, B.R., Dunca, E, Mutvei, H & Norlund, U, 2004. A 217-year record of summer air temperature reconstructed from freshwater pearl mussels (M. margarifitera, Sweden). Quaternary Science Reviews 23: 1803–1816 + 2057.
  • Schöne, B.R., Pfeiffer, M, Pohlmann, T & Siegismund, F, 2005. A seasonally resolved bottom water temperature record for the period of AD 1866-2002 based on shells of Arctica islandica (Mollusca, North Sea). International Journal of Climatology 25: 947–962.
  • Schöne, B.R., Rodland, DL, Wehrmann A, Heidel, B, Oschmann, W, Zhang, Z, Fiebig, J, Beck, L, 2006. Combined sclerochronologic and oxygen isotope analysis of gastropod shells (Gibbula cineraria, North Sea): life-history traits and utility as a high-resolution environmental archive for kelp forests. Marine Biology, DOI 10.1007/s00227-006-0435-9.
  • Scourse, J., Richardson, C., Forsythe, G., Harris, I., Heinemeier, J., Fraser, N., Briffa, K., Jones, P., 2006. First cross-matched floating chronology from the marine fossil record: data from growth lines of the long-lived bivalve mollusc Arctica islandica. The Holocene, 16(7): 967-974.
  • Swart, PK, Dodge, RE and Hudson, JH, 1996. A 240–year stable oxygen and carbon isotopic record in a coral from south Florida: implications for the prediction of precipitation in southern Florida. Palaios 11: 362–375.
  • Thompson, I, Jones, DS and Ropes, JW, 1980. Annual internal growth banding and life history of the Ocean Quahog Arctica islandica (Mollusca: Bivalvia). Marine Biology 57: 25–34.
  • Trutschler, K and Samtleben, C, 1988. Shell growth of Astarte elliptica (Bivalvia) from Kiel Bay (Western Baltic Sea). Marine Ecological Program Series 42: 155–162.
  • Weber, A., Witbaard, R., Steenpaal, S., 2000. Can depth camouflage age? The example of ageless Astarte. Senckenberg Maritima, 31(2): 225-234.
  • Witbaard, R, 1996. Growth variations in Arctica islandica L. (Mollusca): a reflection of hydrography-related food supply. International Council for the Exploration of the Sea, Journal of Marine Science 53: 981–987.
  • Witbaard, R, Jenness, MI, van der Borg, K and Ganssen, G, 1994. Verification of annual growth increments in Arctica islandica L. from the North Sea by means of oxygen and carbon isotopes. Netherlands Journal of Sea Research 33: 91–101.
  • Witbaard, R., Duineveld, G.C.A. and Wilde, P.A.W.J. de, 1997. A long-term growth record derived from Arctica islandica (Mollusca, Bivalvia) from the Fladen Ground (northern North Sea). Journal of the Marine Biological Association of the United Kingdom, 77: 801-816.
  • Zazzo, A., Balasse, M., and Patterson, W.P. 2006. The reconstruction of mammal individual history: refining high-resolution isotope record in bovine tooth dentine. Journal of Archaeological Science, v. 33, p. 1177-1187.