Triviale schakel

Uit Wikipedia, de vrije encyclopedie
Ga naar: navigatie, zoeken
Een 2-componenten triviale schakel.

In de knopentheorie, een deelgebied van de topologie, is een triviale schakel een schakel, die (onder omgevende isotopie) equivalent is aan een eindige hoeveelheid disjuncte cirkels in het vlak.

Eigenschappen[bewerken]

Voorbeelden[bewerken]

  • De Hopf-schakel is een simpel voorbeeld van een schakel met twee componenten, die geen triviale schakel is.
  • De Borromeaanse ringen vormt een schakel met drie componenten, die geen triviale schakel is; elk paar van twee ringen van een Borromeaanse ring afzonderlijk vormt echter een twee-componenten triviale schakel.

Zie ook[bewerken]