Exponentiële integraal

Uit Wikipedia, de vrije encyclopedie
Ga naar: navigatie, zoeken
(boven)
(onder)

De exponentiële integraal is een functie, die gedefinieerd is als de integraal:

Van een dergelijke integraal bestaat geen primitieve functie. Waarden van de functie zijn wel te vinden met reeksontwikkelingen, of in tabellen. Een goede benadering kan gevonden worden door:

waarin een rationale functie is met dezelfde graad in teller en noemer.

Reeksontwikkeling[bewerken]

De exponentiële integraal heeft de reeksontwikkeling

waarin de constante van Euler-Mascheroni is.

Verband met de logaritmische integraal[bewerken]

De functie is nauw verwant met de logaritmische integraal. Voor is: