Sensitiviteit en specificiteit

Uit Wikipedia, de vrije encyclopedie
Ga naar: navigatie, zoeken

Sensitiviteit en specificiteit zijn termen die vaak worden gebruikt om de waarde van een test in de medische diagnostiek te beschrijven. De sensitiviteit is een maat voor de "gevoeligheid" van de test, de specificiteit bepaalt hoe "specifiek" de test is. De sensitiviteit en de specificiteit worden beide uitgedrukt als fractie, of in procenten, bijvoorbeeld 0,90 of 90%.

Sensitiviteit[bewerken]

De sensitiviteit van een geneeskundige test is het percentage terecht positieve uitslagen onder de zieke personen. Het is de verhouding tussen het aantal personen dat positief scoort en bij wie de door de test onderzochte ziekte daadwerkelijk aanwezig is, en het totaal van alle onderzochte personen met de ziekte (inclusief het aantal personen dat negatief scoort en bij wie de ziekte toch aanwezig is). Het is dus een maat voor de gevoeligheid van de test voor de onderzochte ziekte. Hoe hoger de sensitiviteit van een test, hoe groter de kans dat iemand die daadwerkelijk de ziekte heeft, een positieve testuitslag krijgt (weinig vals negatieve uitslagen (weinig C)). Een testuitslag is positief indien de posterior kans (nakans, achteraf-kans) die erbij hoort groter is dan de nakans die bij het andere (het negatieve) testresultaat hoort.

Specificiteit[bewerken]

De specificiteit van een test is het percentage terecht negatieve testuitslagen onder de niet-zieke personen. De specificiteit van een test is de verhouding tussen het aantal terecht negatieve uitslagen (niet ziek, negatieve uitslag) en het totaal van alle gevallen waarbij de ziekte afwezig is. Het totaal van alle gevallen waarbij de ziekte afwezig is bestaat uit een som van de gevallen waarbij een foutpositieve uitslag (loos alarm) is verkregen en de gevallen die een terechte negatieve uitslag kregen. Zie de formules hieronder. Dus hoe hoger de specificiteit van een test, hoe groter de kans dat iemand die de ziekte niet heeft, een negatief testresultaat krijgt (weinig vals positieve uitslagen (weinig B)).

Ideale test vanuit het standpunt van sensitiviteit en specificiteit[bewerken]

Een test kan een hoge sensitiviteit (gevoeligheid) hebben, maar vaak vals alarm slaan. De test moet ook specifiek zijn, dat wil zeggen zo veel mogelijk positieve uitslag geven bij de door de test onderzochte ziekte, en zo weinig mogelijk bij afwezigheid van de geteste ziekte. Een ideale test zou een sensitiviteit van 100% moeten hebben (bij alle ziektegevallen is de test positief) en ook een specificiteit van 100% (als de ziekte afwezig is, is de test negatief). Deze 100% accurate test wordt de 'Gouden Standaard' genoemd [1]In werkelijkheid is dit nooit het geval, of is zo'n test niet praktisch of te duur.

Uitwerking[bewerken]

Als A, B, C en D zijn gedefinieerd zoals in de kruistabel

conditie aanwezig conditie afwezig
test positief A (Echt positieven, terecht alarm) B (Foutpositief, loos alarm)
test negatief C (Foutnegatief, gemiste gevallen) D (Echt negatieven, terecht verworpen)

dan kunnen sensitiviteit en specificiteit (in fracties) wiskundig beschreven worden als volgt:

  • sensitiviteit = A / (A + C), dus
{\rm sensitiviteit}=\frac{\rm het\ aantal\ echt\ positieven}{{\rm het\ aantal\ echt\ positieven}+{\rm het\ aantal\ fout\ negatieven}}.
  • specificiteit = D / (D + B), dus
{\rm specificiteit}=\frac{\rm het\ aantal\ echt\ negatieven}{{\rm het\ aantal\ echt\ negatieven}+{\rm het\ aantal\ fout\ positieven}}.

Door de resultaten van de bewerkingen te vermenigvuldigen met 100 bekomt men een uitdrukking van deze maten in procenten.

Op grond van bovenstaande definities wordt in het ideale geval voor zowel de specificiteit als de sensitiviteit van een test 100% gevonden.

In werkelijkheid komt dit niet voor. Meestal daalt het ene als het andere stijgt: een test waarbij de testuitslagen niet binair zijn (een test met meer dan twee uitslagen) heeft altijd een twijfelgebied (grijs gebied), en een hoge specificiteit wordt bereikt door in dit twijfelgebied negatief te kiezen, terwijl een hoge sensitiviteit juist wordt bereikt door dit twijfelgebied positief te kiezen. Men kiest afhankelijk van de situatie voor een zo hoog mogelijke specificiteit of een zo hoog mogelijke sensitiviteit.

Soms wordt de relatie tussen sensitiviteit en 1 - specificiteit in functie van de afkappunten grafisch voorgesteld door een ROC-curve. Met behulp van deze ROC-curve kan de optimale keuze van afkappunt worden gekozen waarbij de sensitiviteit en specificiteit maximaal zijn.

Voorbeelden[bewerken]

Hiv-test[bewerken]

Een opsporingstest voor hiv bij bloeddonoren moet een zo hoog mogelijke sensitiviteit hebben: men wil dus vermijden dat er fout-negatieve uitslagen zijn. Een fout-negatieve uitslag wil zeggen dat iemand die hiv-besmet is, de uitslag krijgt dat hij gezond is. In dat geval zal onterecht het bloed als gezond worden beschouwd en zal het bij toediening de acceptor besmetten.

De sensitiviteit van de test kan worden ingesteld door te schuiven met de drempelwaarde , de waarde waarbij de test als positief wordt beschouwd. Indien bv. 5 en meer als een positieve testuitslag beschouwd wordt en minder dan 5 als een negatieve testuitslag dan is 5 de drempelwaarde (afkappunt, Engels: cut-off point). Naarmate het afkappunt hoger ligt, zal het aantal dat positief scoort dalen, dus ook de sensitiviteit en voor specificiteit geldt het omgekeerde. Een test met hoge sensitiviteit (lage drempel) zal dus een lagere specificiteit hebben, waardoor sommige mensen onterecht als hiv-positief worden beschouwd. Hun bloed zal onterecht geweigerd worden, maar dit is veel minder erg dan het omgekeerde. Test men echter iemand die bezorgd is voor zijn eigen gezondheid dan geldt het omgekeerde, en zal men een positieve test (die een gerede kans heeft onterecht positief (fout-positief), te zijn) door een nader onderzoek altijd willen bevestigen.

In de praktijk zal men meestal eerst een test gebruiken met een hoge sensitiviteit (ELISA). Indien het resultaat negatief is kan men de patiënt geruststellen en zeggen dat hij niet besmet is met hiv. Als de ELISA positief is zal men de patiënt hier echter nog niet over inlichten. Gezien de lagere specificiteit van de ELISA is er immers een substantieel aantal vals-positieve testuitslagen en loopt men het risico de patiënt onterecht slecht nieuws te brengen. In plaats daarvan zal men op hetzelfde bloedstaal een test uitvoeren met hoge specificiteit: een immunoblot. Als ook deze test positief is kunnen we met zekerheid stellen dat de patiënt seropositief is voor hiv.

Schuld van een verdachte[bewerken]

Een voorbeeld van een situatie waarin juist een hoge specificiteit gewenst is, is de gerechtelijke toetsing van de strafbaarheid van een verdachte. Deze moet liefst een zo hoog mogelijke specificiteit hebben. Fout-positief betekent in dit geval namelijk dat een onschuldige toch schuldig wordt bevonden. Fout-negatief betekent dat een schuldige onschuldig wordt bevonden. In ons rechtssysteem gaat men ervan uit dat het erger is een onschuldige op te sluiten dan een schuldige vrijuit te laten gaan. Men wenst bij de veroordeling dus zo weinig mogelijk fout-positieven. Dus krijgt de verdachte altijd het voordeel van de twijfel, ondanks dat hierdoor de sensitiviteit lager wordt en dus meer schuldigen vrijuit zullen gaan.

Haalbaarheid[bewerken]

Bij medische tests is een hoge sensitiviteit en specificiteit vaak niet haalbaar. Als beide 90% bedragen beschouwt men dat in de geneeskunde meestal al als een heel goede test. Een zwangerschapstest is een van de beste, met een sensitiviteit EN een specificiteit van circa 99%. Bij de zogeheten 'reumatest' zijn beide ongeveer 80%. Om de uitslagen van medische onderzoeken zinvol te kunnen beoordelen is het dan ook van groot belang een goed idee van de prevalentie van de ziekte te kennen. Een positief testresultaat bij een onderzoek naar een zeldzame aandoening heeft namelijk vaak niets te betekenen.

Sensitiviteit, specificiteit en de ROC-curve[bewerken]

Bij een continue variable is het vanzelfsprekend dat, bij positieve samenhang, de sensitiviteit zal stijgen naarmate het afkappunt, het punt waarop en waarboven men een testuitslag als positief aanziet, daalt. Is een tweede afkappunt lager dan het eerste dan zullen er niet alleen meer zieken zijn die positief scoren maar zullen er tevens meer niet-zieken zijn die positief scoren, met andere woorden een hogere sensitiviteit is steeds gekoppeld aan een lagere specificiteit (tenzij bij perfecte associatie). Men kan nu de sensitiviteit op de y-as weergeven van een cartesiaans stelsel in functie van 1 - specificiteit (x-as). Het resultaat van deze bewerking is een ROC-curve.

Geschiedenis van de diagnostische interpretatie[bewerken]

In de vorige eeuw werd een hoge sensitiviteit gezien als een middel om de door de test onderzochte ziekte uit te sluiten, een hoge specificiteit om de diagnose te stellen. De oorzaak hiervan was een fundamenteel wantrouwen tegen de posttest-waarschijnlijkheden (nakansen) en dus ook voorspellende (predictieve) waarden (positieve voorspellende waarde = nakans bij positief testresultaat, negatieve voorspellende waarde is het complement van nakans bij negatief testresultaat).

Sensitiviteit en specificiteit worden dan, bij gebrek aan beter, als constanten geacht. Men vergeet bij deze manier van denken dat men, door het aantal zieken te vermenigvuldigen met een factor de representativiteit van de steekproef negeert en dat dit de oorzaak ervan is dat men geen valide nakans meer kan berekenen. Men veralgemeent dan de invaliditeit van de nakansen terwijl bij een representatieve steekproef de nakansen wel degelijk valide te berekenen zijn.

Deze opvatting is in deze eeuw nog in brede kringen verspreid maar een nieuwe opvatting wint veld. De waarde van de nakans wordt voorop gesteld en er is weer vertrouwen in. Meer en meer worden naast de sensitiviteit en de specificiteit de voorspellende waarden vermeld. Bovendien construeerde men al aan het einde van de vorige eeuw maten die een combinatie zijn van sensitiviteit en specificiteit: de likelihood ratios. Deze likelihood ratios moeten dienen om de nakans te berekenen. Aan deze nakans wordt diagnostisch de hoogste waarde toegekend. Er lijkt zich dus op dit gebied een copernicaanse revolutie aan het voordoen: van de sensitiviteit en specificiteit naar de posttest-waarschijnlijkheid.

Zie ook[bewerken]

Externe link[bewerken]

Referenties[bewerken]

  1. J.P.Vandenbroucke, A.Hofman: Grondslagen der Epidemiologie. 6e druk. 1999. Elsevier/Bunge, Maarssen

Bronnen

  • Altman DG, Bland JM (1994). Diagnostic tests. 1: Sensitivity and specificity. BMJ 308 (6943): 1552 . PMID:8019315.
  • Attia, J (2003). Moving beyond sensitivity and specificity: using likelihood ratios to help interpret diagnostic tests. Austr Presc 26:111-113.
  • Davidson, M (2002). The interpretation of diagnostic tests: a primer for physiotherapists. Australian Journal of Physiotherapy 48, 227-232.
  • Deeks, J and Altman, D (2004). Diagnostic tests 4: likelihood ratios. BMJ 229:168-169.
  • Pewsner, D, Battaglia, M, Minder, C, Marx, A, Bucher, H, Egger, M. (2004). Ruling a diagnosis in and out with “SpPIn” and “SnNOut”: a note of caution. BMJ 329:209-213.