Zonneboiler

Uit Wikipedia, de vrije encyclopedie
Ga naar: navigatie, zoeken

Een zonneboiler is de aanduiding voor het systeem van een warmwaterboiler tezamen met een zonnecollector. Deze zonnecollector zet hoofdzakelijk de elektromagnetische straling van het zichtbare licht van de zon direct om in warmte. Het is dus geen zonnepaneel of PV-paneel.

Werking[bewerken]

Schematische werking zonneboiler: koud water komt in een geïsoleerd voorraadvat (B). Het collectormedium wordt via de zonnecollector (C) opgewarmd door zonnestraling (D), waardoor het water in het vat verhit wordt en warm water afgegeven kan worden (E). De watertemperatuur in het vat is bovenin (F+) door convectie warmer dan het water onder in het vat (G-)

Het principe van een zonneboiler is eenvoudig: als een tuinslang de hele dag in de zon ligt, wordt het water in de slang erg warm. Zonneboilers maken gebruik van datzelfde principe. Het opgewarmde water in de buizen wordt verpompt en de warmte daarvan bewaard in een geïsoleerd voorraadvat: de boiler. Wanneer de temperatuur in de buizen hoger is dan in de boiler zet een regeleenheid de pomp aan. Daardoor wordt door het koude water van de boiler de zonnecollector gekoeld en wordt de boiler door het warme water van de zonnecollectoren verwarmd. Na enige tijd, wanneer de zonnecollector en de boiler bijna dezelfde temperatuur hebben, schakelt de regeleenheid de pomp uit. Op deze manier staat er een hoeveelheid warmte beschikbaar om gebruikt te worden op het gewenste moment, al schijnt de zon zwak of helemaal niet. Zelfs in de winter als de zon maar een paar uur schijnt, kan zo'n boiler voldoende warm water produceren om te douchen, te wassen of schoon te maken. Sommige systemen leveren ook een bijdrage aan de ruimteverwarming.

Bij een geopende warmwaterkraan stroomt het koude leidingwater, al of niet indirect, door het opgewarmde voorraadvat naar de kraan. Als het water niet warm genoeg is, dan brengt bijvoorbeeld de cv-ketel, de geiser of een warmtepomp het op de gewenste temperatuur. Dit proces heet naverwarming. Een CV-ketel die geschikt is het voor het naverwarm proces dient het Gaskeur NZ label te dragen. De afwijkende eigenschap van een NZ label ketel en een reguliere CV-ketel is dat de inlaattemperatuur tot 85 graden Celsius of hoger geen probleem vormt voor de CV-ketel[1] .

De collector wordt in Nederland vaak op het dak van een woning geplaatst. De opbrengst in Nederland is optimaal als de hellingshoek van de collector ongeveer 45 graden is en deze georiënteerd is op het zuiden.

Vlakkeplaatcollector[bewerken]

De vlakkeplaatcollector bestaat uit een absorber met een speciale coating, een zogeheten spectraalselectieve laag. Deze laag heeft een hoge absorptiefactor en tegelijkertijd een lage emissiefactor. Met andere woorden voor licht gedraagt het zich als een warmte absorberende (zwarte) laag, maar voor warmte als een niet emitterende (witte) laag. Op deze manier kan een hoge temperatuur bereikt worden. Dit in tegenstelling tot bijvoorbeeld zwarte verf, die wel de lichtenergie opneemt, maar die warmte weer uitstraalt, of witte verf die de warmte wel vasthoudt maar niet opneemt.

De spectraalselectieve laag kan als speciale (dure) verf worden opgebracht, of door chemische bewerking van metaal of worden opgedampt op een metalen plaat, zoals koper of aluminium. Aan de achterzijde van deze metalen plaat lopen dunne leidingen waardoor het collectormedium stroomt, waaraan de ingewonnen warmte wordt afgegeven. De absorber wordt aan de achterkant en zijkant geïsoleerd met een dikke laag minerale wol en/of polyurethaanschuim en aan de voorkant met een glasplaat van ijzerarm, gehard glas.[bron?]

Vacuümbuiscollectoren[bewerken]

Vacuümbuiscollectoren zijn te vergelijken met een thermoskan. Het zijn twee glazen buizen in de "kanonvorm" die ruim in elkaar passen waartussen een hoog vacuüm heerst. Op de binnenste glazen buis is aan de vacuüm kant een spectraalselectieve laag opgedampt. Hierdoor zal het door de buitenste glazen buis doorgelaten zonlicht de binnenste buis opwarmen. Door het vacuüm kan er geen warmte door convectie verloren gaan en vanwege de spectraalselectieve laag ook niet als warmte (infrarood) straling. In de binnenste buis bevindt zich een heatpipe die de warmte transporteert naar een buis met collectormedium. Meestal is dit gewoon water met antivries. Stagnatietemperaturen van over de 200 graden Celsius kunnen op deze manier worden bereikt. Vanwege de werking van de heatpipe, dient de hellingshoek tussen de 15 en de 75 graden te zijn. Daardoor kan de koelvloeistof netjes langs de interne wand van de heatpipe omlaagstromen. Bij verticale opstelling kan de neerdruppelende koelvloeistof het opstijgende gas hinderen: er ontstaat dan turbulentie. Bij horizontale opstelling komt de stroming in de heatpipe niet op gang.

Kosten[bewerken]

ThermodynamicPanelsInstalled.jpg

Voor individuele installaties bedragen de kosten van een zonneboiler tussen de € 500 en € 3500 (incl. installatiekosten en btw).[bron?] De meest prijsgunstige systemen qua aanschaf en onderhoud zijn vaak de terugloop/leegloopsystemen, doordat daarbij minder componenten worden gebruikt en er geen druk op het systeem staat, zoals bij systemen die met glycol zijn gevuld wel het geval is. Een doorstroomzonneboiler (tapwater loopt door de warmtewisselaar in het vat in plaats van het collectormedium) is een nieuwe toepassing waarbij legionellabesmetting tot het verleden behoort. De Nederlandse overheid gaf sinds 2008 weer subsidie bij de aanschaf van een zonneboiler. Dit is een aanschafsubsidie van ongeveer 30% van de aanschafprijs van het systeem. De terugverdientijd van een zonneboiler is daarmee zo'n 7 tot 9 jaar gerekend met een gasprijsstijging van meer dan 7% per jaar. Deze subsidie maakte onderdeel uit van de regeling Duurzame warmte voor bestaande woningen, die in 2011 is beëindigd.

In België bestaat het recht op subsidies naargelang de gemeente, provincie en intercommunale. In Vlaanderen werd in 2012 beslist de tot dan bestaande premie, toegekend door de Vlaamse overheid aan wie investeert in een zonneboiler, op te trekken van 200 naar van € 550 per vierkante meter collectoroppervlakte, begrensd tot maximaal € 2750.[2]

Energiebesparing[bewerken]

De jaarlijkse besparing van een standaardsysteem met vlakkeplaatcollector bedraagt 150 tot 350 kubieke meter aardgas bij een collectoroppervlak van ongeveer 2,5 tot 3,5 vierkante meter (+/-3,6 tot 4,2 GJ). De besparing is afhankelijk van het tapwaterverbruik. Voor een gemiddeld huishouden tot vier personen scheelt dat ongeveer de helft van het verbruikte gas voor het verwarmen van het tapwater. Dat levert een jaarlijkse besparing op van ongeveer € 200. De jaarlijkse elektriciteitsbesparing ten opzichte van een elektrische boiler bedraagt ongeveer 1300 kWh en dit levert een financiële besparing op van zo'n € 260 (alle bedragen zijn prijspeil 2009).

Een vacuümbuissysteem heeft in de winter een wat hoger rendement dan een vlakkeplaatcollector, doordat deze minder warmte verliest aan de omgeving. Hierdoor kan een vacuümbuissysteem ook gebruikt worden voor cv-verwarming en verwarming. Wanneer een systeem met vacuümbuizen wordt gebruikt voor alleen tapwater en cv-verwarming, is er vaak in de zomer veel warmte over, doordat het systeem op de winterperiode wordt gedimensioneerd, of te weinig warmte voor de cv in de winter wanneer het op de zomer(tapwater)behoefte wordt gedimensioneerd. De zonneboiler moet warmer zijn in de winter dan de retourtemperatuur van de cv om iets te kunnen toevoegen. Vaak is de zonneboiler te koud om warmte te kunnen toevoegen aan de cv, doordat de zon in de winter nu eenmaal minder krachtig is en er ook minder zonnige dagen zijn. Wanneer er in de zomer warmte over is, is die niet op te slaan voor de winterperiode, waardoor het totale rendement van zo'n systeem lager uitvalt. De prijs van een vacuümbuis/heatpipesysteem is zo'n 1,5 tot 3 maal hoger dan van een vlakkeplaatsysteem, afhankelijk van het merk van de buizen. Omdat in Nederland de subsidie bedoeld is voor tapwatersystemen, is de subsidie voor systemen van meer dan 6 m² lager dan die voor systemen van kleiner dan 6 m². Tevens geldt er een maximumsubsidie per huishouden van € 1.500 om de kleine systemen aan te moedigen. Op dit moment zit er geen geld in de pot voor de regeling duurzame warmte. Het is niet bekend of deze dit jaar nog wordt aangevuld.

Overtollige zonnewarmte in de zomer kan echter wel opgeslagen worden onder gebouwen die al verwarmd worden met een warmtepomp. Zodoende wordt 's zomers het grondwater onder een gebouw verwarmd. Zonneboilers kunnen zo het rendement van een warmtepompinstallatie flink verhogen, en daarmee de CO2-belasting door gebouwverwarming nog verder verlagen.

Bouwvergunning[bewerken]

In het Vlaams Gewest is geen bouwvergunning nodig voor het plaatsen van een zonneboiler of fotovoltaïsche zonnecellen op een plat dak of van maximaal 20% van de oppervlakte van een schuin dak. In Nederland ook niet, zolang het niet op een monument wordt geplaatst, de hoek op een schuin dak gelijk is aan de dakhelling en op een plat dak de afstand tot de rand evenveel is als de hoogte van de collector.

Legionellabacterie[bewerken]

Bij een zonneboiler in zijn eenvoudigste vorm bestaat een kleine kans op de aanwezigheid van legionellabacteriën. Wanneer water met deze legionella bacterie verneveld wordt (douche) en in de longen komt, kan dit de veteranenziekte veroorzaken.

De legionellabacterie ontwikkelt zich gedurende enkele dagen in stilstaand lauw water van ongeveer 40 graden Celsius. Dit wordt dus bij de zonneboiler veroorzaakt als het water in het voorraadvat gedurende lange tijd stabiel matig warm is. Dit zal in de praktijk bijna niet voorkomen. Alleen als de grootte van het vat te groot is gekozen ten opzichte van de zonnecollector waardoor er slechts geringe temperatuurfluctuaties optreden zal dit bij die installatie soms het geval zijn.

Door de natuurlijke variatie in zonne-intensiteit (bewolkt-onbewolkt) en het regelmatig gebruik zullen de temperatuursfluctuaties zeer groot zijn. Dat moet ook wel, omdat in een goed gedimensioneerd systeem, bij normaal gebruik de temperatuur in het vat aanzienlijk zal dalen. Dan wordt de opwarming pas begrensd vlak voor het kookpunt. Daarna kan men dan enkele dagen vooruit met het gebruik van warm water bij bewolkt weertype en zakt de boilertemperatuur van 90 tot 40 graden en dan is het te koud voor direct gebruik. Mocht dat weertype te lang duren dan is de tijdsduur gedurende dat het water 40 graden is, kort ten opzichte van de tijd die de legionellabacterie nodig heeft om te groeien. Alleen wanneer er gedurende vele dagen precies zoveel opwarming door zonneinstraling is als afkoeling door het verbruik, dan bestaat de verwaarloosbare kans op legionellavorming.

Maar om toch eventuele aansprakelijkheid uit te sluiten worden zonneboilers voorzien van een elektrisch systeem dat wekelijks het water gedurende een half uur tot boven de 60° verwarmt. Dan weet men in ieder geval 100% zeker dat alle legionellabacerieën zijn gedood, ten koste van dure elektriciteit.

Een zeer elegante oplossing is het gebruik van een extra warmtewisselaar in het opslagvat voor de opwarming van het gebruikswater op het moment dat het nodig is (doorstroom systeem). Het drinkwater blijft dan gescheiden van het water voor de warmteopslag. Vanwege de zeer geringe hoeveelheid water in de warmtewisselaar wordt deze bij bijna elk gebruik doorgespoeld. Bovendien is zo'n warmtewisselaar bijna altijd gemaakt van koper, het beste materiaal tegen legionella.

Thermosifonsysteem van een zonneboiler[bewerken]

Dichtheid van water in relatie tot de temperatuur

Een zelfwerkend thermosifonsysteem is aantrekkelijk voor de watercirculatie in het verwarmende circuit van een zonneboiler. Daarbij is geen circulatiepompje nodig en geen regeling. Vragen daarbij zijn:

  • Is er voldoende circulatiekracht
  • Wat wordt het overgedragen vermogen
  • Vindt er 's nachts geen terugstroming van het opgewarmde water plaats

De dichtheid van water[bewerken]

Het thermosifonsysteem is gebaseerd op een natuurlijke stroming die ontstaat door verschillen in dichtheid van het warme en koude water in het verwarmende circuit van het systeem. De grafiek geeft het verband tussen de temperatuur en de dichtheid van water. Als er in het verwarmende circuit een andere vloeistof dan water wordt gebruikt (bijvoorbeeld koelvloeistof), dan zullen de dichtheidswaarden anders liggen.

Principe van een zonneboiler met een thermosifonsysteem

Het principe van het thermosifonsysteem kan worden geïllustreerd door de dichtheid van het medium in het systeem voor te stellen door de breedte van balken in een evenwichtsplaatje. In deze voorstelling staat het zonnepaneel (de collector) links en de boiler rechts. Uiteraard zijn er ook verbindingsleidingen waarin het water een bepaalde temperatuur en dus een bepaalde dichtheid heeft. Alleen de verticale afstanden spelen een rol, de horizontale verbindingsleidingen zijn niet interessant.

Op de onderkanten van het linkerbeen (collector) en van het rechterbeen (boiler) komt een bepaalde druk te staan, gegeven door de formule:

	p =  \rho * h * g

Hierin is:

  • p = druk op onderzijde been (N/m²)
  • ρ = dichtheid medium (kg/m³)
  • h = hoogte van de vloeistofkolom (m)
  • g = versnelling van de zwaartekracht (9,81 m/s²)

Het drukverschil dat voor de circulatie zorgt wordt gegeven door de totale druk van alle vloeistofkolommen links te verminderen met de totale druk van alle vloeistofkolommen rechts. Als voorbeeld zie de principeschets.

Vermogen van een thermosifonsysteem bij verschillende temperaturen

Berekening van het vermogen[bewerken]

Het overgedragen vermogen P van het thermosifonsysteem is een functie van het temperatuurverschil tussen het hete en de koude been en van de optredende stroomsnelheid. Dit laatste hangt weer samen met de weerstanden in de verbindingsleidingen. Handboeken over centrale verwarmingsinstallaties geven details over de weerstand van leidingsystemen en de optredende stroomsnelheid bij een gegeven drukverschil. Als voorbeeld: in een zonneboiler met een 2 m² paneel en een 100 liter boiler kan het vermogen bij een Δ t van 80°C ca. 7 kW bedragen. Naarmate de boiler opwarmt (of het paneel minder zon opvangt) wordt het vermogen lager. De figuur toont enige getallen voor een concreet uitgevoerd systeem, bij verschillende verschiltemperaturen.

Legenda bij de figuren:

  • tw = temperatuur heet water van paneel naar boiler
  • tk = temperatuur retourwater van boiler naar paneel
  • Δρ = verschil in dichtheid koud - warm verwarmend medium
  • Δp = drukverschil door verschil in dichtheid
  • Δp/m¹ = drukverschil per meter leiding
  • Q = stroomsterkte verwarmend medium
  • v = stroomsnelheid verwarmend medium
  • P = overgedragen vermogen
  • Tll = temperatuur leiding links
  • Tlr = temperatuur leiding rechts
Evenwicht in een thermosifonsysteem

Ongewenste terugstroming[bewerken]

Bij een thermosifonsysteem zou ongewenste terugstroming kunnen optreden als het temperatuurverschil tussen het hete en het koude been omdraait. Bij een zonneboiler doet zich dit 's nachts voor. Om terugstroming te voorkomen zou er een terugslagklep of een magneetklep in het leidingsysteem gebouwd moeten worden. De extra weerstand die dit oplevert en de benodigde sturing van een magneetklep maken deze oplossingen onaantrekkelijk. Het blijkt dat terugstroming voorkomen kan worden door het koude been (paneel) lager te plaatsen dan het hete been (boiler). De verbindingsleidingen moeten goed geïsoleerd worden. Er ontstaat evenwicht bij een bepaalde combinatie van temperaturen, waarbij de toevoerleiding (boven het paneel, Tll) warmer blijft dan de retourleiding (onder de boiler, Tlr). De figuur geeft de optredende dichtheidsverschillen grafisch weer. Bij deze opstelling en de gegeven maatvoering is er evenwicht en vindt er geen terugstroming plaats.

De opstellingsschets geeft een concreet gerealiseerd systeem weer, waarbij geen terugstroming plaatsvindt. De toegepaste boiler heeft alle aansluitingen aan de bovenkant, maar dat blijkt de circulatie niet te belemmeren. Met een 2 m² collector verkrijgt men op een zonnige dag 110 liter heet water, temperatuur 60 tot 90°C.

Opstelling van een zonneboilersysteem met thermosifon

Zie ook[bewerken]

Bronnen, noten en/of referenties
  • De tekst op deze pagina of een eerdere versie daarvan is afkomstig van de website van het ministerie van VROM.