Multivariate normale verdeling: verschil tussen versies

Uit Wikipedia, de vrije encyclopedie
Verwijderde inhoud Toegevoegde inhoud
Mwpnl (overleg | bijdragen)
kGeen bewerkingssamenvatting
Versie 13150031 van Mwpnl (overleg) ongedaan gemaakt - 'Normale' is veel gangbaarder dan 'normaal'
Regel 19: Regel 19:
}}
}}


In de [[kansrekening]] en de [[statistiek]] is de '''multivariate normaalverdeling''' een speciale [[kansverdeling]]: het is het analogon van de [[normaalverdeling]] in meer [[dimensie|dimensies]]. De verdeling wordt ook wel met multidimensionale normaalverdeling en multivariate Gaussische verdeling aangeduid.
In de [[kansrekening]] en de [[statistiek]] is de '''multivariate normale verdeling''' een speciale [[kansverdeling]]: het is het analogon van de [[normale verdeling]] in meer [[dimensie|dimensies]]. De verdeling wordt ook wel met multidimensionale normale verdeling en multivariate Gaussische verdeling aangeduid.


== Definitie ==
== Definitie ==
De stochastische [[vector (wiskunde)|vector]] <math>X = (X_1, \dots, X_n)</math> heeft een ''multivariate normaalverdeling'' met verwachting <math>\mu = (\mu_1, \dots, \mu_n)</math> en [[covariantie]]matrix de [[positief definiet]]e n×n-[[matrix (wiskunde)|matrix]] &Sigma;, als de kansdichtheid gegeven is door:
De stochastische [[vector (wiskunde)|vector]] <math>X = (X_1, \dots, X_n)</math> heeft een ''multivariate normale verdeling'' met verwachting <math>\mu = (\mu_1, \dots, \mu_n)</math> en [[covariantie]]matrix de [[positief definiet]]e n×n-[[matrix (wiskunde)|matrix]] &Sigma;, als de kansdichtheid gegeven is door:


:<math>
:<math>
Regel 41: Regel 41:
Men noteert kort: <math>X \sim N(\mu, \Sigma)\,</math>.
Men noteert kort: <math>X \sim N(\mu, \Sigma)\,</math>.


Net als bij de univariate normaalverdeling, is de [[verdelingsfunctie]] niet expliciet in gesloten vorm te schrijven.
Net als bij de univariate normale verdeling, is de [[verdelingsfunctie]] niet expliciet in gesloten vorm te schrijven.


== Speciaal geval: univariate normaalverdeling ==
== Speciaal geval: univariate normale verdeling ==
In het geval ''n'' = 1 is de verdeling niet meerdimensionaal, maar de gewone [[normaalverdeling]].
In het geval ''n'' = 1 is de verdeling niet meerdimensionaal, maar de gewone [[normale verdeling]].


== Speciaal geval: bivariate normaalverdeling ==
== Speciaal geval: bivariate normale verdeling ==
Als ''n'' = 2 heet de verdeling ook [[Normaalverdeling#Bivariate normale verdeling|bivariate normale verdeling]]. De covariantiematrix wordt vaak geschreven als
Als ''n'' = 2 heet de verdeling ook [[Normale verdeling#Bivariate normale verdeling|bivariate normale verdeling]]. De covariantiematrix wordt vaak geschreven als
:<math>\Sigma=\begin{pmatrix}\sigma_1^2 & \rho\sigma_1\sigma_2\\ \rho\sigma_1\sigma_2 & \sigma_2^2 \end{pmatrix},</math>
:<math>\Sigma=\begin{pmatrix}\sigma_1^2 & \rho\sigma_1\sigma_2\\ \rho\sigma_1\sigma_2 & \sigma_2^2 \end{pmatrix},</math>


Regel 55: Regel 55:
Als <math>X = (X_1, \dots, X_n)\sim N(\mu,\Sigma)</math>, geldt:
Als <math>X = (X_1, \dots, X_n)\sim N(\mu,\Sigma)</math>, geldt:


* Elke willekeurige lineaire combinatie <math>Y = a'X=a_1 X_1 + \cdots + a_n X_n</math> heeft een (univariate) normaalverdeling, met verwachting <math>a'\,\mu\,</math> en variantie <math>a'\ \Sigma a\,</math>.
* Elke willekeurige lineaire combinatie <math>Y = a'X=a_1 X_1 + \cdots + a_n X_n</math> heeft een (univariate) normale verdeling, met verwachting <math>a'\,\mu\,</math> en variantie <math>a'\ \Sigma a\,</math>.
* De [[karakteristieke functie]] en [[momentgenererende functie]] zijn gegeven zoals vermeld in het overzicht rechtsboven.
* De [[karakteristieke functie]] en [[momentgenererende functie]] zijn gegeven zoals vermeld in het overzicht rechtsboven.



Versie van 17 jul 2008 08:04

Sjabloon:Kansverdeling

In de kansrekening en de statistiek is de multivariate normale verdeling een speciale kansverdeling: het is het analogon van de normale verdeling in meer dimensies. De verdeling wordt ook wel met multidimensionale normale verdeling en multivariate Gaussische verdeling aangeduid.

Definitie

De stochastische vector heeft een multivariate normale verdeling met verwachting en covariantiematrix de positief definiete n×n-matrix Σ, als de kansdichtheid gegeven is door:

Daarin is |Σ| de determinant van Σ.

Notatie

Men noteert kort: .

Net als bij de univariate normale verdeling, is de verdelingsfunctie niet expliciet in gesloten vorm te schrijven.

Speciaal geval: univariate normale verdeling

In het geval n = 1 is de verdeling niet meerdimensionaal, maar de gewone normale verdeling.

Speciaal geval: bivariate normale verdeling

Als n = 2 heet de verdeling ook bivariate normale verdeling. De covariantiematrix wordt vaak geschreven als

waarin ρ de correlatiecoëfficiënt tussen X1 en X2 is.

Eigenschappen

Als , geldt:

  • Elke willekeurige lineaire combinatie heeft een (univariate) normale verdeling, met verwachting en variantie .
  • De karakteristieke functie en momentgenererende functie zijn gegeven zoals vermeld in het overzicht rechtsboven.

Gaussproces

Een Gaussproces is een stochastisch proces waarvan de eindigdimensionale verdelingen (de verdeling van de waardenvector van het proces op een eindige verzameling tijdstippen) normaal zijn. Klassieke voorbeelden van Gaussprocessen zijn: de Brownse beweging en het Ornstein-Uhlenbeckproces.

Sjabloon:Verdelingnavigatie