Multivariate normale verdeling

Uit Wikipedia, de vrije encyclopedie
Ga naar: navigatie, zoeken
Multivariate normaal
Kansdichtheid
Verdelingsfunctie
Parameters reële vector)
positief definiete reële n×n-matrix
Drager
Kansdichtheid
Verwachtingswaarde
Mediaan
Modus
Variantie
Scheefheid 0
Kurtosis 0
Moment-
genererende functie
Karakteristieke functie
Portaal  Portaalicoon   Wiskunde

In de kansrekening en de statistiek is de multivariate normale verdeling een speciale kansverdeling: het is het analogon van de normale verdeling in meer dimensies. De verdeling wordt ook wel met multidimensionale normale verdeling en multivariate Gaussische verdeling aangeduid.

Definitie[bewerken]

De stochastische vector heeft een multivariate normale verdeling met verwachting en covariantiematrix de positief definiete n×n-matrix , als de kansdichtheid gegeven is door:

Daarin is de determinant van .

Notatie[bewerken]

Men noteert kort: .

Net als bij de univariate normale verdeling, is de verdelingsfunctie niet expliciet in gesloten vorm te schrijven.

Speciaal geval: univariate normale verdeling[bewerken]

In het geval n = 1 is de verdeling niet meerdimensionaal, maar de gewone normale verdeling.

Speciaal geval: bivariate normale verdeling[bewerken]

Als n = 2 heet de verdeling ook bivariate normale verdeling. De covariantiematrix wordt vaak geschreven als

waarin ρ de correlatiecoëfficiënt tussen X1 en X2 is.

Eigenschappen[bewerken]

Als , geldt:

  • Elke willekeurige lineaire combinatie heeft een (univariate) normale verdeling, met verwachting en variantie .
  • De karakteristieke functie en momentgenererende functie zijn gegeven zoals vermeld in het overzicht rechtsboven.

Gaussproces[bewerken]

Een Gaussproces is een stochastisch proces waarvan de eindigdimensionale verdelingen (de verdeling van de waardenvector van het proces op een eindige verzameling tijdstippen) normaal zijn. Klassieke voorbeelden van Gaussprocessen zijn: de Brownse beweging en het Ornstein-Uhlenbeckproces.