Naar inhoud springen

Multivariate normale verdeling

Uit Wikipedia, de vrije encyclopedie
Multivariate normaal
Kansdichtheid
Verdelingsfunctie
Parameters reële vector)
positief definiete reële n×n-matrix
Drager
Kansdichtheid
Verwachtingswaarde
Mediaan
Modus
Variantie
Scheefheid 0
Kurtosis 0
Moment-
genererende functie
Karakteristieke functie
Portaal  Portaalicoon   Wiskunde

In de kansrekening en de statistiek is de multivariate normale verdeling een speciale kansverdeling: het is het analogon van de normale verdeling in meer dimensies. De verdeling wordt ook wel met multidimensionale normale verdeling en multivariate Gaussische verdeling aangeduid.

De stochastische vector heeft een multivariate normale verdeling met verwachting en covariantiematrix de positief definiete n×n-matrix , als de kansdichtheid gegeven is door:

Daarin is de determinant van .

Men noteert kort: .

Net als bij de univariate normale verdeling, is de verdelingsfunctie niet expliciet in gesloten vorm te schrijven.

Speciaal geval: univariate normale verdeling

[bewerken | brontekst bewerken]

In het geval is de verdeling niet meerdimensionaal, maar de gewone normale verdeling.

Speciaal geval: bivariate normale verdeling

[bewerken | brontekst bewerken]

Als heet de verdeling ook bivariate normale verdeling. De covariantiematrix wordt vaak geschreven als

,

waarin de correlatiecoëfficiënt tussen en is.

Eigenschappen

[bewerken | brontekst bewerken]

Als , geldt:

  • Elke willekeurige lineaire combinatie heeft een (univariate) normale verdeling, met verwachting en variantie .
  • De karakteristieke functie en momentgenererende functie zijn gegeven zoals vermeld in het overzicht rechtsboven.

Een Gaussproces is een stochastisch proces waarvan de eindigdimensionale verdelingen (de verdeling van de waardenvector van het proces op een eindige verzameling tijdstippen) normaal zijn. Klassieke voorbeelden van Gaussprocessen zijn: de brownse beweging en het Ornstein-Uhlenbeckproces.