Exponentiële verdeling
Exponentiële verdeling | ||||
---|---|---|---|---|
Kansdichtheid![]() | ||||
Verdelingsfunctie![]() | ||||
Parameters | ratio of inverse schaal (reëel) | |||
Drager | ||||
Kansdichtheid | ||||
Verdelingsfunctie | ||||
Verwachtingswaarde | ||||
Mediaan | ||||
Modus | ||||
Variantie | ||||
Scheefheid | ||||
Kurtosis | ||||
Entropie | ||||
Moment- genererende functie |
||||
Karakteristieke functie | ||||
|
In de kansrekening en de statistiek is de exponentiële verdeling een continue verdeling. De exponentiële verdelingen worden vaak gebruikt voor het modelleren van de tijd tussen twee gebeurtenissen die met een constante gemiddelde snelheid voorkomen. De exponentiële verdeling is een specifiek geval van de gamma-verdeling.
Definitie[bewerken | brontekst bewerken]
De kansdichtheid van een exponentiële verdeling wordt gegeven door:
waar de parameter van de verdeling is, die vaak een snelheidsparameter of intensiteitsparameter is. De verdeling wordt gedragen door het interval [0,∞). De verdeling wordt vanwege de negatieve exponent, ook wel negatief-exponentiële verdeling genoemd. Het is het continue analoog van de geometrische verdeling.
De verdelingsfunctie wordt gegeven door
Alternatieve parameter[bewerken | brontekst bewerken]
In plaats van de bovengenoemde parameter , wordt ook wel de parameter gebruikt. De kansdichtheid heeft dan de vorm:
De parameter is het omgekeerde van de eerder genoemde snelheidsparameter , en stelt een levensduurparameter voor. Als een toevalsvariabele de levensduur van een biologisch of mechanisch systeem voorstelt en is exponentieel verdeeld met parameter , dan is , dus de verwachte levensduur van het systeem bedraagt tijdseenheden.
Geheugenloosheid[bewerken | brontekst bewerken]
De exponentiële verdeling heeft als merkwaardige eigenschap geheugenloosheid. Als een levensduur is die exponentieel verdeeld is, worden de overlevingskansen voor gegeven door:
- .
We leiden nu eenvoudig af dat voor geldt:
- .
Daarin volgt de eerste stap uit de constatering dat de gebeurtenis een deel is van de gebeurtenis ; anders gezegd: als , is vanzelf ook .