Zadelpunt

Uit Wikipedia, de vrije encyclopedie
Naar navigatie springen Naar zoeken springen
Een zadelpunt op het oppervlak

Een zadelpunt is een begrip uit de wiskundige analyse waarmee een tweedimensionale interpretatie van een buigpunt wordt gegeven. Het intuïtieve begrip zadelpunt krijgt daarmee een wiskundige betekenis. Zadelpunten zijn punten in een driedimensionale ruimte, gedefinieerd op het gekromde oppervlak van de grafiek van een functie in twee variabelen, waar in de ene richting de functie een maximum heeft en in de andere richting een minimum. Formeel is een zadelpunt van een gladde functie een stationair punt waarvoor geldt dat het oppervlak dat de grafiek vormt in elke omgeving van het punt niet uitsluitend aan één zijde ligt van het raakvlak in dat punt aan de grafiek. Een voldoende voorwaarde daarvoor is dat de hessiaan niet-definiet is, wat inhoudt dat eigenwaarden verschillend van teken zijn, één positief en één negatief. De hessiaan is de matrix met de tweede-orde partiële afgeleiden van de functie die het oppervlak beschrijft.

Bij een zadelpunt zijn op het oppervlak van de grafiek twee gekromde lijnen te vinden die elkaar alleen in het zadelpunt snijden en zodanig over het oppervlak lopen dat de een in het zadelpunt een minimum heeft en de andere een maximum.

Als een zadelpunt grafisch weergegeven wordt, ziet het eruit als een zadel. In de bergen dienen zadelpunten zich aan als bergpassen.

Zie ook[bewerken | brontekst bewerken]