Spectroscopie

Uit Wikipedia, de vrije encyclopedie
Ga naar: navigatie, zoeken
Artistieke animatie van de kleurschifting door een prisma waarbij een spectrum van kleuren zichtbaar wordt. In het echt golft het licht niet, maar volgt het rechte lijnen. Wel wordt blauw licht sterker gebroken dan rood.

Spectroscopie is een verzamelnaam voor wetenschappelijke technieken om stoffen te onderzoeken aan de hand van hun spectrum, hun wisselwerking met straling van verschillende energie. Spectroscopische technieken worden toegepast in de natuurkunde, analytische scheikunde en fysische chemie om de eigenschappen van samengestelde moleculaire, atomaire of subatomaire systemen te achterhalen of omgekeerd de samenstelling van een monster te bepalen.

Oorspronkelijk werd de term spectroscopie alleen gebruikt voor onderzoek naar atomen en moleculen, waarbij alleen straling van verschillende golflengten van het elektromagnetisch spectrum (infraroodstraling, licht, ultravioletstraling of röntgenstraling) een rol speelt (bijvoorbeeld ramanspectroscopie). Voor de beschrijving en analyse van atomen spreekt men van atoomspectroscopie, dito voor moleculen van molecuulspectroscopie.

Spectroscopie kijkt naar de toestanden van microscopische systemen. Deze zijn veelal discreet, met een energieniveau, een levensduur, spin, pariteit, een spectrum van eigenschappen dat kan worden beschreven in de kwantummechanica. Een instrument waarmee het spectrum van straling bestudeerd wordt heet een spectroscoop.

In het algemeen wordt binnen de spectroscopie van een systeem de inwendige structuur beschreven met het spectrum van metastabiele (soms slechts extreem kortdurende) toestanden (excitaties), die kunnen worden gevormd door absorptie van straling en die kunnen vervallen door emissie (uitzenden) van straling. Door het bestaan van behoudswetten kan het spectrum van het te bestuderen systeem worden bepaald door waarneming van geabsorbeerde of geëmitteerde straling. Hierbij kan straling naast elektromagnetisch ook van een andere aard zijn, zoals elektronen (bètastraling), heliumkernen (alfastraling) of nog andere deeltjes (bijvoorbeeld protonen, neutronen).

Hetzelfde geldt voor subatomaire materie, zo spreekt men bij de studie van atoomkernen van kernspectroscopie, waarbij hoogenergetische elektromagnetische straling (gammastraling) een hoofdrol speelt. Ook bij de studie van tal van gebonden systemen van elementaire deeltjes gebruikt men de term spectroscopie, zo kent men bijvoorbeld positroniumspectroscopie, hadronspectroscopie, mesonspectroscopie, en dergelijke.

In de astronomie[bewerken]

In de astronomie is spectroscopie een belangrijk hulpmiddel om de samenstelling van sterren en andere hemellichamen te kunnen bepalen. Sterren worden dan ook ingedeeld naar hun spectraalklasse. Pionier op het gebied van astronomische spectroscopie was de Engelsman William Huggins samen met zijn vrouw Margaret Lindsay Huggins. Ook is door de verschuiving van bekende spectraallijnen door middel van het Dopplereffect de snelheid van objecten te bepalen. Willam Huggins bepaalde op deze manier in de 19e eeuw de snelheid waarmee de ster Sirius zich van de aarde verwijdert: ruim 20 mijl per seconde. Weer later ontdekte Edwin Hubble dat hoe verder sterrenstelsels van ons af staan, hoe groter de roodverschuiving van de spectraallijnen is.

Zie ook[bewerken]

Externe link[bewerken]