Broeikaseffect

Uit Wikipedia, de vrije encyclopedie
Ga naar: navigatie, zoeken
Weerkaatste en uitgezonden straling
(Bron: NASA)

Het broeikaseffect is het proces waarbij warmtestraling van een planetair oppervlak geabsorbeerd wordt door atmosferische broeikasgassen en vervolgens uitgezonden wordt in alle richtingen. Aangezien een deel teruggezonden wordt naar het oppervlak, wordt de oppervlaktemperatuur hoger dan dat wat het zou zijn in de afwezigheid van de broeikasgassen. De atmosfeer is selectief transparent: het laat zichtbaar licht van de zon wel bijna volledig door. Zonder het broeikaseffect, dus zuiver het effect van zonlicht en aardwarmte, zou de temperatuur op Aarde gemiddeld -18 °C zijn; feitelijk is zij echter +15 °C. Het effect is genoemd naar de broeikas waar een glazen of plastic overkapping de uitstraling van warmte tegenhoudt en zo de temperatuur in de broeikas laat oplopen.

Menselijk handelen, zoals ontbossing en de verbranding van fossiele brandstoffen zorgen ervoor dat op Aarde de concentratie van een aantal broeikasgassen stijgt, waardoor het broeikaseffect wordt versterkt. Dit leidt tot de de opwarming van de Aarde.

Werking[bewerken]

De temperatuur van het aardoppervlak wordt bepaald door een evenwicht van een aantal factoren.

Bijdragen die warmte toevoegen zijn:

  • Straling van de zon die niet meteen wordt teruggekaatst;
  • Aardwarmte.

Warmte wordt aan het oppervlak onttrokken door:

Door verdamping en convectie wordt warmte op verschillende manieren getransporteerd. Door verdamping koelt het aard- of zeeoppervlak af waarna de warme en vochtige lucht opstijgt en wolken vormt. Bij deze wolkvorming komt de aan het aardoppervlak opgenomen warmte tijdens het condensatieproces weer vrij zodat er per saldo warmte van het aardoppervlak naar hogere luchtlagen getransporteerd is. Dit warmte- en watertransport levert een belangrijke bijdrage aan de temperatuurstijging op hogere breedtegraden.

Andere warmtebronnen, zoals het verbranden van fossiele brandstoffen, zijn - afgezien van de gerelateerde emissies van broeikasgassen - ten opzichte van in- en uitstraling verwaarloosbaar.

De bijdrage van het zonlicht en de afname van de warmte door de uitstraling zijn op een ingewikkelde manier afhankelijk van een aantal omstandigheden:

  • IJs en sneeuw verminderen de hoeveelheid geabsorbeerde zonnestraling en verminderen bovendien de uitstraling;
  • Wolken kaatsen zonlicht terug maar hinderen aan de andere kant de uitstraling;[1]
  • Broeikasgassen absorberen straling uit beide richtingen, met per saldo een vermindering van de uitstraling;
  • Fijn stof in de lucht weerkaatst vooral zichtbaar licht en vermindert dus per saldo de opwarming door de zon, bovendien vergemakkelijkt het de vorming van wolken;
  • Sommige stoffen (zoals roet) maken wolken minder reflecterend, andere stoffen (zoals zwaveldioxide) juist méér.

Er stelt zich een evenwicht in doordat de uitstraling van infrarood toeneemt bij stijgende temperatuur. De inkomende straling van de zon is van een kortere golflengte (veelal zichtbaar licht), dan de uitstraling (veelal infrarode straling). Broeikasgassen absorberen vooral infrarode straling en kaatsen het terug naar het aardoppervlak, maar absorberen minder van de inkomende straling van de zon. Dit verhoogt de evenwichtstemperatuur op de Aarde, en wordt het broeikaseffect genoemd.

Voorbeelden van broeikasgassen zijn waterdamp[2] (veroorzaakt 36-70% van het broeikaseffect, wolken niet meegeteld), kooldioxide (CO2, veroorzaakt 9-26%), methaan (CH4, veroorzaakt 4-9%) en ozon (O3, veroorzaakt 3-7%). De hoeveelheid waterdamp in de lucht is sterk afhankelijk van de temperatuur: hoe warmer, hoe meer verdamping er plaats vindt en hoe meer waterdamp er in de lucht zit. De hoeveelheid andere broeikasgassen bepalen dus in sterke mate de concentratie waterdamp.

Het broeikaseffect veroorzaakt een inversie (omkering) in het temperatuurverloop (dit wordt temperatuurgradiënt genoemd) van de atmosfeer.[bron?] Zonder broeikaseffect zou de temperatuur gemeten vanaf het aardoppervlak en hoger in de lucht, vrij lineair afnemen; hoe verder van het oppervlak, hoe kouder het wordt. Door het broeikaseffect heeft de aardatmosfeer echter een zogenoemde inversielaag. Deze laag wordt gekenmerkt door een omgekeerd verloop; hoe hoger (verder van de Aarde) men komt, hoe warmer het wordt. Het is deze laag die uitstraling van warmte tegenhoudt en zo als een soort "warme deken" om de Aarde ligt.

Overigens gaat de vergelijking tussen een broeikas en het aardse broeikaseffect maar ten dele op. In beide gevallen komt de temperatuur hoger te liggen, doordat de uitstroom van warmte belemmerd wordt en de instroom niet. Maar een gewone broeikas werkt vooral door het belemmeren van convectie. Infrarode straling die de grond in een kas raakt warmt de bodem op, die warmt de lucht bij de bodem op en die lucht stijgt=convectie. Maar de stijgende warme lucht wordt door het glas tegengehouden zodat de warmte in de kas blijft. De energie die in de infrarode straling zit die de kas binnenkomt wordt omgezet in warmte die 'gevangen' blijft in de kas. Broeikasgassen houden geen convectie (bewegende lucht) tegen maar nemen (infrarode) straling op.

Ontdekking van het broeikaseffect[bewerken]

Het broeikaseffect is in de loop van de 19e eeuw ontdekt door de gecombineerde observaties van drie wetenschappers. In 1827 kwam de Fransman Joseph Fourier met het idee dat de temperatuur alleen verklaard kon worden door onzichtbare warmtestraling. De Engelsman John Tyndall maakte in 1861 resultaten bekend van laboratoriummetingen, waaruit bleek dat waterdamp en gassen als kooldioxide warmtestraling opnamen. Hij dacht dat variaties in die gassen klimaatveranderingen konden verklaren.

In 1896 publiceerde de Zweed Svante Arrhenius berekeningen van temperatuurveranderingen op Aarde door variaties in de hoeveelheid kooldioxide. Een verdubbeling leidde volgens hem tot een opwarming van 4 tot 6 graden. In 1906 stelde hij dat echter bij naar 1,6 graden.[3] Arrhenius wordt dan ook beschouwd als de ontdekker van de opwarming van de Aarde.

Het broeikaseffect op andere planeten[bewerken]

Een planeet die een sterk broeikaseffect heeft, is de planeet Venus. Doordat Venus dichter bij de zon staat dan de aarde, valt op basis van een verhoogde warmte-instraling een hogere oppervlaktetemperatuur dan op Aarde te verwachten. Het verschil is echter veel groter dan op basis van het verschil in afstand verwacht mag worden, en de oppervlaktetemperatuur van Venus (480 °C) is hoger dan die van Mercurius, hoewel Mercurius veel dichter bij de zon staat.

De oorzaak is dat Venus een zeer dichte atmosfeer heeft, die voor het grootste deel uit het broeikasgas CO2 bestaat. Het broeikaseffect is op Venus dan ook zeer sterk. Mercurius daarentegen heeft vrijwel geen atmosfeer, en derhalve ook geen broeikaseffect. De hoeveelheid instraling is op de door de zon beschenen kant weliswaar erg hoog, maar de uitstraling is ook erg hoog. Hierdoor zijn de verschillen tussen dag- en nachttemperatuur zeer groot (in de orde van +250 en -250 graden Celsius).

Op basis van foto's van Mars gemaakt door de Mars Global Surveyor en de NASA Odyssey-missie valt af te leiden, dat de laatste 3 jaar de CO2-ijskap op Mars krimpt. Berekeningen van Fenton, Geissler en Haberle[4] ondersteunen de verklaring dat het smelten van de CO2-ijskap op Mars door een positieve feedback-loop van stofstormen komt.

Huidige versterking van het broeikaseffect[bewerken]

Nuvola single chevron right.svg Zie Opwarming van de Aarde voor het hoofdartikel over dit onderwerp.
Toename van broeikasgassen en hun bijdrage (bron: NASA)

In de loop van de twintigste eeuw zijn er verscheidene modellen ontworpen die een systematische stijging van de hoeveelheid broeikasgassen in de atmosfeer beschrijven. Dit wordt het versterkt broeikaseffect genoemd. Eind jaren vijftig begon men systematisch de koolstofdioxideconcentratie in de atmosfeer te meten. Pionier op dit gebied was Charles David Keeling (1928-2005), die als eerste de concentraties met grote nauwkeurigheid en langdurig registreerde. Dit deed hij zowel op de Mauna Loa-vulkaan op Hawaï, als op het Amerikaanse militaire Zuidpool-station. Na twee jaar meten meldde hij dat de kooldioxideconcentratie in de atmosfeer wereldwijd aan het stijgen was. Metingen uit 2013 laten een gemiddelde concentratie van circa 395 ppm (parts per million) CO2 zien.[5] Toen Keeling begon te meten was dit 315 ppm en uit luchtbelletjes opgesloten in de ijskap van Antarctica wordt geconcludeerd dat deze concentratie voor aanvang van de Industriële revolutie ongeveer 280 ppm was. Het is waarschijnlijk dat deze stijging is te wijten aan menselijke activiteiten; ruwweg 75% door verbranding van fossiele brandstoffen en 25% door massale ontbossing en daaraan verwante erosie.[6]

Toename CO2 in de aardatmosfeer

De gemeten hoeveelheid CO2 in de atmosfeer is sinds de Industriële revolutie gestegen van ca. 270 naar ca. 395 ppm (januari 2013).[7] Uit ijsboringen is bekend dat de concentratie CO2 in de afgelopen 800.000 jaar niet eerder zo hoog is geweest als nu.[8] De herkomst van deze stoffen is met zekerheid vast te stellen uit metingen van isotopenconcentraties van de koolstof hierin. Koolstof uit fossiele brandstof bevat nauwelijks de isotoop koolstof-14 door de 200 miljoen jaar ondergrondse opslagtijd, gedurende dewelke koolstof-14 vervallen is tot stabielere isotopen. In de atmosfeer wordt continu koolstof-14 bijgemaakt, onder invloed van kosmische straling. De samenstelling van de toegenomen CO2 in de atmosfeer bevat weinig koolstof-14, wat wijst op herkomst van fossiele brandstof. Ook in de oceanen neemt de concentratie CO2 toe, wat resulteerde in een afname van de zuurgraad pH met 0,1 tot dusver. CO2 vormt in water immers koolzuur (H2CO3) en dit is een zuur.

Verband tussen CO2 en temperatuur[bewerken]

Er is een duidelijk verband tussen de CO2-concentratie en de temperatuur op aarde, maar daaruit is de relatie tussen oorzaak en gevolg niet direct af te leiden.[9] Allerlei wederzijdse positieve en negatieve terugkoppelingsmechanismen zorgen voor deze complexe relatie. Eén ervan is dat de oplosbaarheid van CO2 in water afneemt als de temperatuur stijgt. Wel reageert het CO2-gehalte veel trager op een verandering in de temperatuur dan andersom: als de temperatuur stijgt dan gaat het CO2-gehalte na 800 tot enkele duizenden jaren ook omhoog, maar als het CO2-gehalte stijgt neemt de temperatuur al binnen veertig jaar toe.

Zonder externe invloeden zoals het verbranden van fossiele brandstoffen of veranderingen in de aardbaanparameters (die leiden tot ijskapvariaties) zijn de veranderingen van temperatuur en broeikasgasgehaltes door de terugkoppelingsmechanismen aan elkaar gerelateerd. Wat oorzaak is en wat gevolg is dan niet zo duidelijk. Maar als de temperatuur verandert door veranderingen in de aardbaanparameters, dan nemen de broeikasgasgehaltes (langzaam) toe en als de broeikasgasgehaltes toenemen, dan neemt de temperatuur (snel) toe. Het is dus alleen zinvol om in termen van oorzaak en gevolg te spreken als er externe invloeden zijn.

Het atmosferische CO2-gehalte is in de afgelopen 100 jaar met circa 100 ppm gestegen. Deze stijging is veel te groot om te kunnen worden verklaard door de temperatuurstijging van 0,7 graad over deze periode. Zij is ook te groot om te kunnen worden verklaard uit temperatuurfluctuaties uit het verleden, die eeuwen later effecten kunnen hebben. Het is dus aannemelijk dat in de afgelopen 100 jaar de temperatuur is gestegen door de toename van het CO2-gehalte en niet andersom.

Gashydraten[bewerken]

Een extra motor voor het broeikaseffect bij een opwarmende aarde zou zijn, dat er op dit moment op de bodem van de oceanen en onder de permanent bevroren bodem in Canada en Rusland (dit wordt permafrost genoemd) geologische structuren bevinden die veel methaan (CH4) opgeslagen hebben. De uitstraling hiervan wordt tegengehouden door de permafrost. Deze zogenaamde gashydraten zouden vrijkomen als de bodem niet meer permanent bevroren is en zo zou de atmosfeer sterk verrijkt worden met het broeikasgas methaan.

Zie ook[bewerken]



Bronnen, noten en/of referenties
  • Delen van deze tekst zijn afkomstig van het KNMI.
  1. Meer CO2, minder wolken Faqt, 5 september 2012
  2. Door de temperatuurstijging die in de laatste honderd jaar is opgetreden neemt de hoeveelheid waterdamp in de atmosfeer toe en wordt het broeikaseffect extra versterkt. Klimaatonderzoekers beschouwen waterdamp daarom als een positief terugkoppelingsmechanisme in het klimaatsysteem en niet als onafhankelijk broeikasgas.
  3. Arrhenius, S (1906) Die vermutliche Ursache der Klimaschwankungen Meddelanden från K. Vetenskapsakademiens Nobelinstitut, Vol 1 No 2, pages 1-10.
  4. Lori K. Fenton, Paul E. Geissler, Robert M. Haberle, 'Global Warming and Climate Forcing by Recent Albedo Changes on Mars', Nature, 5 april 2007, zie artikel op Noorderlicht van 6 april 2007
  5. Trends in Atmospheric Carbon Dioxide. Earth System Research Laboratory (2014)
  6. IPCC-rapport 2007
  7. NOAA Earth System Research Laboratory, http://www.esrl.noaa.gov/gmd/ccgg/trends/
  8. D. Lüthi, M. Le Floch, B. Bereiter, T. Blunier, J. Barnola, U. Siegenthaler, D. Raynaud, J. Jouzel, H. Fischer, K. Kawamura & T.F. Stocker (2008). High-resolution carbon dioxide concentration record 650,000–800,000 years before present 453 (Nature).
  9. Klimaatportaal: Bepaalt de temperatuur de CO2 concentratie of andersom?, Laatst bezocht op 4 februari 2008