Kaartprojectie

Uit Wikipedia, de vrije encyclopedie
Ga naar: navigatie, zoeken

Een kaartprojectie is een methode om het gebogen oppervlak van de Aarde over te brengen op een vlakke kaart. Als wordt afgezien van het feit dat de Aarde afgeplat is, is dit wiskundig een afbeelding van een boloppervlak of een deel daarvan naar een plat vlak.

In een aantal gevallen kan de afbeelding ook als meetkundige projectie worden weergegeven op een ontwikkelbaar oppervlak. Voor de meeste kaartprojecties gaat dit echter niet op, de term projectie wordt dan in een meer algemene zin gebruikt.

Het is niet mogelijk om het aardoppervlak zonder vervormingen weer te geven op een plat vlak (het is zelf geen ontwikkelbaar oppervlak). Er zijn dan ook vele kaartprojecties met verschillende eigenschappen. Afhankelijk van de aan de kaart gestelde eisen en het af te beelden gebied, is een projectie meer of minder geschikt. Bij nationale coördinatensystemen is dan ook gekozen voor een kaartprojectie die bij het betreffende land past.

Meetkundige projecties[bewerken]

Een meetkundige kaartprojectie kan men zich voorstellen als een doorzichtig model van een deel van het aardoppervlak (als een dia in de vorm van een deel van een bol), dat op een projectiescherm wordt geprojecteerd. De lichtbron bevindt zich dan op grote afstand (parallelprojectie) of bijvoorbeeld in het centrum of op het oppervlak van de bol (puntprojectie). Het projectiescherm kan een kegel zijn, of de uitersten daarvan: een cilinder of een plat vlak. Afhankelijk van de plek van de 'lichtbron', de oorsprong van de projectie, en de vorm en positie van het 'projectiescherm' (het kaartbeeld) ontstaan allerlei verschillende soorten projecties met uiteenlopende eigenschappen. Soms wordt een projectie in algemenere zin beschreven in termen van een meetkundige projectie, maar dan met de plek van de 'lichtbron' afhankelijk van het geprojecteerde punt op het aardoppervlak. Bij bijvoorbeeld de orthografische cilinderprojectie is de 'lichtbron' op de cilinderas, maar de positie daarop hangt af van de breedtegraad van het geprojecteerde punt. Fysiek kan men dit zich voorstellen als lampjes op de as die door afscherming alleen in de richtingen loodrecht op de as (rondom) schijnen.

Vorm van de aarde[bewerken]

De vorm van de aarde heeft een grillig verloop dat ongeschikt is om te dienen als uitgangspunt bij het vervaardigen van een kaart. Om dit mogelijk te maken wordt gebruikgemaakt van benaderingen en tussenstappen zoals de rekenbol. In toenemende mate van benadering van de werkelijke vorm zijn dit de bol, de omwentelingsellipsoïde en de geoïde.

Bol[bewerken]

Indien de nauwkeurigheid niet zo groot hoeft te zijn, zoals bij kaarten op kleine schaal als wereldkaarten, kan de aarde als bol worden beschouwd.

Ellipsoïde[bewerken]

Isaac Newton berekende reeds in de 17e eeuw op theoretische gronden dat de Aarde als gevolg van de zwaartekracht enerzijds en de middelpuntvliedende kracht anderzijds geen bol is, maar een oblate ellipsoïde met afgeplatte polen. Later werd die afplatting nauwkeurig berekend.

Er zijn verschillende referentie-ellipsoïdes in gebruik die verschillen in vorm, afmetingen, positie, oriëntatie en schaalfactor. Zo zijn oudere ellipsoïdes in gebruik die goed aansluiten bij de lokale geoïde, maar die wereldwijd niet goed bruikbaar zijn. Tegenwoordig zijn ellipsoïdes in gebruik met het massacentrum van de aarde als oorsprong, zoals WGS 84.

Geoïde[bewerken]

Het topografisch oppervlak wordt benaderd met de geoïde, het vlak op gemiddeld zeeniveau waar dezelfde zwaartekrachtpotentiaal heerst, het equipotentiaalvlak. Ook dit is echter nog dusdanig onregelmatig dat hiervan geen bruikbaar wiskundig model is te maken.

Vormen van projectie[bewerken]

Een meetkundige projectie wordt wel aangeduid als echte projectie. Vaak is de constructie eerder mathematisch, in welk geval wel wordt gesproken van een onechte projectie. Hieronder volgt een overzicht van de kenmerken van zowel 'echte' als 'onechte' projecties.

De indeling van meetkundige projecties naar projectievlak (kegelprojectie, cilinderprojectie en azimutale projectie) is in veel gevallen uitbreidbaar naar 'onechte' projecties, doordat die kunnen worden opgevat als verkregen door een meetkundige projectie verder te bewerken om gewenste eigenschappen te krijgen. Nog verdergaande bewerkingen leveren bijvoorbeeld de pseudo-cilindrische oppervlaktegetrouwe sinusoïde projectie en de Robinsonprojectie op.

De meetkundige projecties worden verder ingedeeld naar de plaats van de oorsprong ('lichtbron'). Het projectievlak wordt in het algemeen zodanig gekozen dat het zonder tweede projectie tot een plat vlak kan worden gemaakt. Na de keuze voor een projectievlak, kan dit op verschillende manieren tegen (of gedeeltelijk 'in') de bol worden geplaatst, meestal zodanig dat het af te beelden deel van de wereld in het midden van de kaart terecht komt, waar de vervormingen het kleinst zijn.

Kegelprojectie Cilinderprojectie Azimutale projectie
Projectievlak Projection conique.jpg
Het projectievlak is een kegelmantel.
Projection cylindrique.jpg
Het projectievlak is een cilindermantel.
Projection azimutale stereographique.jpg
Het projectievlak is een plat vlak.
Ligging Cylindrical Projection aspects.svg
De ligging kan normaal, transversaal of scheef zijn. Bij een normale ligging valt de centrale as samen met de aardas, terwijl deze bij een transversale ligging negentig graden gedraaid ligt ten opzichte van normaal. Een scheve (oblique) ligging valt tussen beide in.
Contact Cylindrical Projection basics.svgCylindrical Projection secant.svg
Het projectievlak kan het aardoppervlak raken, maar ook snijden. De vervorming is minimaal waar het projectievlak het aardoppervlak raakt. In sommige gevallen geldt dit ook waar het projectievlak het aardoppervlak snijdt.
Oorsprong
De oorsprong van een meetkundige projectie, het 'lichtpunt', kan op verschillende plaatsen ten opzichte van de bol gekozen worden
Projection azimutale gnomonique.jpgProjection azimutale stereographique.jpgProjection azimutale orthographique.jpgGvp diagram.jpg

Bij de gnomonische of centrale projectie ligt de oorsprong van de projectie in het centrum van de bol. Bij de stereografische projectie ligt de oorsprong op de bol. Bij orthografische projectie wordt loodrecht op een oppervlak geprojecteerd (bij orthografische cilinderprojectie is daarbij de oorsprong afhankelijk van één van beide coördinaten van het geprojecteerde punt). Bij afbeelding op een plat vlak komt dat overeen met een oorsprong op grote afstand. Bij de perspectiefprojectie ligt de oorsprong buiten de aardbol en wordt het dichtstbijgelegen deel van de bol afgebeeld.

Conforme projecties

Een hoekgetrouwe of conforme kaart laat hoeken intact en beeldt daardoor een kleine vorm op de bol bij benadering gelijkvormig af op de kaart

Usgs map lambert conformal conic.PNG

Conforme kegelprojectie van Lambert

Usgs map mercator.svg

Normale conforme projectie

Usgs map stereographic.PNG

Stereografische projectie

Equivalente projecties

De schaal van de equivalente kaart kan variëren, maar de verhouding van de oppervlakten van twee gebieden op de kaart is gelijk aan de verhouding van hun oppervlakten in werkelijkheid

Usgs map albers equal area conic.PNG

Equivalente kegelprojectie

World borders cil hsi.png

Cilinderprojectie van Lambert

Usgs map lambert azimuthal equal area.PNG

Azimutale projectie van Lambert

Equidistante projectie

Op een afstandsgetrouwe of equidistante kaart is de schaal langs bepaalde lijnen onafhankelijk van het punt op zo'n lijn. Deze lijnen kunnen ontspringen aan één punt (radiaal) of parallel langs elkaar liggen. Langs lijnen die uit een ander punt ontspringen respectievelijk die niet parallel lopen geldt die afstandsgetrouwheid niet

Usgs map equidistant conic.PNG

Equidistante kegelprojectie

World borders geo hsi.png

Kwadratische platkaart

World borders eqaz.png

Equidistante azimutale projectie

Gewenste eigenschappen[bewerken]

Door bovenstaande parameters te kiezen, en als gevolg van eventuele nabewerkingen, krijgt de kaart bepaalde eigenschappen. Gewenste eigenschappen kunnen zijn:

  • hoekgetrouw
    een hoekgetrouwe of conforme kaart laat hoeken intact en beeldt daardoor een kleine vorm op de bol bij benadering gelijkvormig af op de kaart;
  • richtinggetrouw
    grootcirkels door één bepaald punt vormen rechte lijnen;
  • oppervlaktegetrouw
    de schaal van de equivalente kaart kan variëren, maar de verhouding van de oppervlakten van twee gebieden op de kaart is gelijk aan de verhouding van hun oppervlakten in werkelijkheid;
  • aaneensluitend
    door kaarten te verknippen kan voor elk van de delen een optimale projectie worden gekozen, maar de delen sluiten dan niet naadloos meer op elkaar aan;
  • afstandsgetrouw
    op een afstandsgetrouwe of equidistante kaart is de schaal langs bepaalde lijnen onafhankelijk van het punt op zo'n lijn. Deze lijnen kunnen ontspringen aan één punt (radiaal) of parallel langs elkaar liggen. Langs lijnen die uit een ander punt ontspringen resp. die niet parallel lopen geldt die afstandsgetrouwheid niet.
  • behoud van kortste weg
    bij sommige projecties (m.n. de gnomonische azimutale) zijn alle grootcirkels rechten, waarmee rechte lijnen op de kaart ook de kortste weg tussen twee punten aangeven.

Bovenstaande eigenschappen zijn niet allemaal in één enkele projectie te combineren. Hoekgetrouwheid en oppervlaktegetrouwheid gaan bijvoorbeeld nooit samen. Als geen van deze eigenschappen bereikt zijn, zoals bij de Winkel-tripelprojectie, spreekt men van een afylactische projectie.

Externe link[bewerken]