Vermenigvuldigen

Uit Wikipedia, de vrije encyclopedie
Ga naar: navigatie, zoeken
Zie het artikel Zie Vermenigvuldiging voor andere betekenissen van Vermenigvuldigen.
Productberekening
De tafels van vermenigvuldiging

Het vermenigvuldigen van twee gehele getallen is een rekenkundige bewerking met hetzelfde resultaat als het herhaald optellen van steeds eenzelfde getal.

De bewerking van het vermenigvuldigen van de twee getallen en wordt geschreven als . Het getal wordt vermenigvuldiger genoemd en het getal het vermenigvuldigtal. Het resultaat van de vermenigvuldiging heet het product van vermenigvuldiger en vermenigvuldigtal.

Als de vermenigvuldiger een positief geheel getal is, komt vermenigvuldigen overeen met herhaald optellen; met andere woorden, een som van termen :

In plaats van 18 keer het getal 24 bij elkaar op te tellen:

24 + 24 + 24 + 24 + 24 + 24 + 24 + 24 + 24 + 24 + 24 + 24 + 24 + 24 + 24 + 24 + 24 + 24,

met als uitkomst 432,

schrijft men:

18 × 24 (18 keer (of maal) 24)

en berekent:

18 × 24 = 432

Het resultaat van de vermenigvuldiging, het getal 432, is het product van vermenigvuldiger 18 en vermenigvuldigtal 24. Omdat vermenigvuldigen commutatief is, 18 × 24 = 24 × 18, worden vermenigvuldiger en vermenigvuldigtal beide ook wel met factor aangeduid.

Het symbool waarmee een vermenigvuldiging wordt aangeduid is een kruisje (×) of een wat hoger geplaatst puntje (·), uitgesproken als maal of keer.

Ook meer dan twee getallen kunnen met elkaar vermenigvuldigd worden. Het product ontstaat door achtereenvolgens herhaaldelijk twee factoren met elkaar te vermenigvuldigen, waarbij het tussenresultaat als nieuwe factor komt in de plaats van de twee. Bijvoorbeeld:

Eigenschappen[bewerken]

  • Vermenigvuldigen is commutatief; dat wil zeggen dat de rol van vermenigvuldiger en vermenigvuldigtal omgewisseld kunnen worden, zonder dat het product (de uitkomst) verandert. (Dit geldt niet voor vermenigvuldigen van matrices).
  • Vermenigvuldigen is associatief; dat wil zeggen dat bij meer dan twee factoren de volgorde waarin de factoren met elkaar vermenigvuldigd worden, het product (de uitkomst) niet verandert.
  • Als een getal vermenigvuldigd wordt met het getal 1 (een), is het resultaat het getal zelf. Het getal een is het neutrale element voor de vermenigvuldiging.
  • Als een getal vermenigvuldigd wordt met het getal 0 (nul), is het product gelijk aan 0 (nul).
  • Het product van een getal , ongelijk aan 0, en zijn omgekeerde is 1 (een).
  • Wanneer er een oneven aantal negatieve factoren zijn, is het product negatief. Bij een even aantal negatieve factoren is het product positief.

Leren vermenigvuldigen[bewerken]

Vermenigvuldigen wordt onderwezen op de basisschool. Daarbij zijn drie belangrijke stappen.

De eerste stap laat met kleine getallen zien dat vermenigvuldigen voortkomt uit herhaald optellen. Daarbij worden eenvoudige voorbeelden gebruikt, zoals: drie kinderen hebben elk twee handen; samen hebben ze zes handen. Dus: Uiteindelijk mondt dit uit in het leren van de tafels van vermenigvuldiging.

In de tweede stap wordt dit gecombineerd met tientallen, honderdtallen, enzovoort. Voor het uitrekenen van 30 × 70 wordt dan eerst berekend: 3 × 7 = 21, en dus: 30 × 70 = 2100. Dit is onder andere in te zien door het ordenen van getallen in rijtjes. Een voorraad van 60 auto's kan worden geordend in 6 rijtjes van 10. Als er 4 van zulke voorraden zijn, resulteren 4 × 6 = 24 rijtjes van elk 10 auto's. Dus: 240 auto's, en uiteindelijk: 4 × 60 = 240. Hier wordt de associativiteit van vermenigvuldigen gebruikt: , oftewel: 4 × (6 × 10) = (4 × 6) × 10.

De derde stap is het in delen vermenigvuldigen van getallen. De vermenigvuldiging 5 × 24 wordt berekend als volgt: 5 × 24 = 5 × (20 + 4) = 5 × 20 + 5 × 4 = 100 + 20 = 120. Hier wordt de distributiviteit van de vermenigvuldiging gebruikt: .

Onder elkaar vermenigvuldigen[bewerken]

De boven uitgelegde methode wordt systematisch toegepast bij het zogeheten 'onder elkaar vermenigvuldigen'. Aan de hand van een voorbeeld zal de methode verduidelijkt worden. Om het product van de getallen 4321 en 567 te berekenen worden de getallen onder elkaar geschreven met de meest rechtse cijfers precies onder elkaar, en daaronder een streep. Dan wordt in een aantal stappen de berekening uitgevoerd.

  1. Het bovenste getal wordt vermenigvuldigd met het rechtercijfer van het onderste: 7×4321=30247.
    Dit gaat ook weer stapsgewijs: eerst 7×1=7. Dit resultaat wordt onder de streep genoteerd.
    Vervolgens 7×2=14. waarvan de 4 wordt genoteerd en de 1 'onthouden' wordt, hier door de 1 boven het volgende cijfer te schrijven.
    Zo gaat men verder: 7×3=21. Samen met de 1 die onthouden moesat worden is dat 22. Daarvan wordt de 2 opgeschreven en de andere 2 onthouden.
    Tot slot: 7×4=28. Samen met de onthouden 2 is dat 30, dat genoteerd wordt.
  2. Bij de volgende stap wordt 60×4321=259260 uitgerekend.
    De 0 wordt direct genoteerd en vervolgens wordt 6×4321 uitgerekend op dezelfde manier als in de eerste stap. Eerst 6×1=6.
    Vervolgens 6×2=12; noteer de 2 en onthoud de 1.
    Dan 6×3=18 Samen met de onthouden 1 is dat 19; schrijf de 9 op en onthoud de 1.
    Tot slot 6×4=24. Samen met de onthouden 1 is dat 25.
  3. In de volgende stap wordt 500×4321=2160500 uitgerekend.
    Nu worden de twee 0-en vast opgescreven en vervolgens 5×4321=21605 op dezelfde manier als in de andere stappen uitgerekend.
  4. Als laatste moeten nog de tussenresultaten bij elkaar opgeteld worden.
    Uitkomst: 4321×567=2450007
            21        11        11        
  4321      4321      4321      4321      4321
   567       567       567       567       567
  ————      ————      ————      ————      ———— ×
           30247     30247     30247     30247
                    259260    259260    259260
                             2160500   2160500
                                       ——————— +
                                       2450007

In de praktijk worden de resultaten van de tussenstappen niet afzonderlijk opgeschreven, maar komt de berekening successievelijk tot stand, en ziet men uiteindelijk alleen de laatste 'kolom'. Zo ziet de berekening van het product van 19287 en 213 er als volgt uit:

     19287
       213
      ———— ×
     57861
    192870
   3857400
   ——————— +
   4108131

In deze berekeningen worden alleen getallen onder de 10 met elkaar vermeningvuldigd. Het is daarom dat de tafels van vermenigvuldiging uit het hoofd geleerd worden.

Alternatieve methode[bewerken]

Een andere manier van uitvoeren van een vermenigvuldiging is de 'kruislingse vermenigvuldiging', waardoor de som van meerdere producten, zoals die zichtbaar zijn bij notering in de traditionele berekening, kan worden teruggebracht tot één product zodat alleen de twee factoren en het product genoteerd worden. In het gegeven voorbeeld van 24 × 18 ontstaat het product 432 door de volgende som: 8 × 4 + 8 × 20+ 10 × 4 + 10 × 20. In grotere berekeningen zullen de vele nullen leiden tot vergissingen, vooral als het product door middel van hoofdrekenen gevonden moet worden.

Ter illustratie van de alternatieve methode dient het volgende voorbeeld, nu zonder gebruik van nullen:

            8 1 2 5 3
         ×  2 3 6 7 4
                                 4*3 = 12; onthoud 1, noteer 2 (van rechts naar links)
                       1 + 4*5 + 7*3 = 42; onthoud 4, noteer 2
                 4 + 4*2 + 7*5 + 6*3 = 65; onthoud 6, noteer 5
           6 + 4*1 + 7*2 + 6*5 + 3*3 = 63; onthoud 6, noteer 3
     6 + 4*8 + 7*1 + 6*2 + 3*5 + 2*3 = 78; onthoud 7, noteer 8
     7 + 7*8 + 6*1 + 3*2 + 2*5       = 85; onthoud 8, noteer 5
     8 + 6*8 + 3*1 + 2*2             = 63; onthoud 6, noteer 3
     6 + 3*8 + 2*1                   = 32; onthoud 3, noteer 2
     3 + 2*8                         = 19;            noteer 19

Het product van deze opgave is dan: 1923583522. Voor kenners van de tafels van 100 is de berekening nog sneller uit te voeren, namelijk:

        74*53 = 3922; onthoud 39, noteer 22.
   39 + 74*12 + 36*53 = 2835; onthoud 28, noteer 35.
   28 + 74*8  + 36*12 + 2*53 = 1158, onthoud 11, noteer 58.
   11 + 36*8  +  2*12 = 323; onthoud 3, noteer 23.
    3 +  2*8 = 19, noteer 19.

Notatie[bewerken]

Het gebruik van een kruisje (Andreaskruis) als maalteken, bijvoorbeeld is afkomstig van William Oughtred en wordt voor het eerst aangetroffen in Thomas Harriots Artis analyticae praxis, postuum gepubliceerd in 1631.[1] Dit symbool wordt aangeleerd in onder meer Vlaamse en Nederlandse basisscholen.

René Descartes gebruikte een punt als maalteken.[1] De hoger geplaatste punt (bijvoorbeeld ) is nog steeds de meest gebruikelijke notatie in 'hogere' publicaties in Europa, maar ook op basisniveau in Duitsland.

In de meeste programmeertalen wordt een sterretje gebruikt (bijvoorbeeld . Dit laatste om verwarring te voorkomen met de Angelsaksische notatie, waarin een punt gebruikt wordt om de decimalen aan te geven, en met de letter x. Als men geen cijfers direct naast elkaar zet, wordt in veel gevallen zelfs helemaal geen teken gebruikt, bijvoorbeeld:

Een product van meerdere factoren schrijft men soms verkort met een vermenigvuldigingsteken, de hoofdletter pi uit het Griekse alfabet.

.

Zo kan men bijvoorbeeld faculteit noteren als

Vermenigvuldigen met behulp van logaritmen[bewerken]

Het daadwerkelijk uitvoeren van vermenigvuldigingen, zonder de hulp van een rekenmachine, is vooral voor grotere getallen een moeizame bezigheid. Al gauw zijn daarom rekenmachines bedacht, aanvankelijk mechanische en later elektrische en elektronische. Een in het verleden veel gebruikte methode was gebaseerd op de eigenschap van logaritmen. Om het product van de twee getallen en uit te rekenen, ging men als volgt tewerk, gebruikmakend van de relatie:

.

Met behulp van een logaritmetafel werden de logaritmen van en van bepaald, waarna deze werden opgeteld. Door terugzoeken in de logaritmetafel werd dan het product gevonden:

.

Op deze manier was het moeizame vermenigvuldigen gereduceerd tot optellen.

Ook de rekenliniaal en de rekenschijf berusten op deze methode.

Inverse van vermenigvuldigen[bewerken]

De inverse bewerking van vermenigvuldigen is delen.

Zie ook[bewerken]