Sauropoda

Uit Wikipedia, de vrije encyclopedie
Naar navigatie springen Naar zoeken springen
Sauropoda
Status: Uitgestorven, als fossiel bekend
Euhelopus
Euhelopus
Taxonomische indeling
Rijk:Animalia (Dieren)
Stam:Chordata (Chordadieren)
Klasse:Reptilia (Reptielen)
Superorde:Dinosauria
Orde:Saurischia
Onderorde:Sauropodomorpha
Infraorde
Sauropoda
Marsh, 1878
Families
Afbeeldingen Sauropoda op Wikimedia Commons Wikimedia Commons
Sauropoda op Wikispecies Wikispecies
Portaal  Portaalicoon   Biologie
Herpetologie

De Sauropoda zijn een onderverdeling van de Sauropodomorpha, plantenetende dinosauriërs.

Naamgeving en definities[bewerken]

De naam Sauropoda ("reptielvoeten") is voor het eerst gepubliceerd in 1878 door de Amerikaanse paleontoloog professor Othniel Charles Marsh.[1] De naam is vaak bekritiseerd als nietszeggend of zelfs, als hij als "hagedisvoeten" gelezen wordt, ronduit misleidend. Marsh wilde er mee aangeven dat de sauropoden, net als de meeste huidige koudbloedige reptielen, meer tenen hadden dan de twee andere dinosaurische hoofdgroepen die hij onderscheidde: de Ornithopoda ("vogelvoeten") en de Theropoda ("zoogdiervoeten").

Een eerste definitie als klade werd in 1997 gegeven door Leonardo Salgado: de groep bestaande uit de laatste gemeenschappelijke voorouder van Vulcanodon karibaensis en de Eusauropoda en al zijn afstammelingen. Hetzelfde jaar kwam McIntosh met een afwijkende definitie als stamklade: alle cetiosauriërs, brachiosauriërs, diplodociden en titanosauriërs en alle Sauropodomorpha nauwer verwant aan deze groepen dan aan de Prosauropoda, mits deze laatsten een monofyletische groep vormen. In 1998 kwamen Wilson en Paul Sereno met een wat handzamer definitie: de groep bestaande uit Saltasaurus en alle soorten nauwer verwant aan Saltasaurus dan aan Plateosaurus. In de jaren daarna bleek echter dat de prosauropoden vermoedelijk helemaal geen monofyletische groep vormden maar, in de traditionele opvatting, parafyletisch waren: sommigen waren dus nauwer verwant aan de sauropoden in traditionele zin. Sereno koos er in 2005 voor om de definitie aan te passen, waarbij de meest direct aan de traditionele sauropoden verwante soorten als vertegenwoordigers van de uit te sluiten "prosauropoden" werden genomen: de groep bestaande uit Saltasaurus loricatus Bonaparte en Powell 1980 en alle soorten nauwer verwant aan Saltasaurus dan aan Jingshanosaurus xinwaensis Zhang and Yang 1994 of Mussaurus patagonicus Bonaparte and Vince 1979.

Afkomst en vroege ontwikkeling[bewerken]

De oorsprong van de Sauropoda is nog onzeker. Ze vormen per definitie een zustergroep van de Prosauropoda; de vraag is of alle vormen waarvoor wij nu de term "prosauropoden" gebruiken tot de Prosauropoda behoren, of dat de Sauropoda nauwer verwant zijn aan sommige bekende "prosauropoden" dan aan andere. De "prosauropoden" waren vrij kleine planteneters uit het Trias. Ze waren meestal zo licht dat ze op twee benen konden lopen, maar steunden kennelijk (zoals wij uit bouw en wellicht sporen kunnen afleiden) soms op hun armen. Ze hadden een lange nek met een kleine kop en tanden die geschikt waren om plantenmateriaal af te scheuren of rukken.

De Eusauropoda waren giganten

In de vroege Jura duiken de eerste vormen op (zoals Vulcanodon) die zo zwaar zijn dat ze alleen nog op vier poten konden lopen. Of deze al tot de Sauropoda behoorden is echter onzeker. Hierover bestaat geen al te grote onzekerheid bij de soorten uit het late Jura. Deze vormen, de Eusauropoda, waaronder de bekende Apatosaurus, Diplodocus en Brachiosaurus, zijn meestal gigantisch groot, zozeer zelfs dat men wel gesproken heeft van een "trend" tot gigantisme bij deze groep. Fragmentarische resten (bijvoorbeeld van Amphicoelias) duiden op soorten die een lengte konden bereiken van zestig meter, een heuphoogte van acht meter en een gewicht van ruim honderd ton. Ze waren vrijwel zeker de grootste landdieren die ooit op de planeet Aarde geleefd hebben en sommige waren wellicht zwaarder dan de blauwe vinvis.

Fylogenie[bewerken]

Owen was in 1859 de eerste die een sauropode indeelde, Cetiosaurus in de Opisthocoelia, samen met Streptospondylus die overigens geen sauropode is. Hij zag ze als een groep krokodillen die zich onderscheidde door het bezit van wervels met een bolle voorkant. Tegenwoordig is duidelijk dat beiden dinosauriërs zijn, welke vaak zulke wervels bezitten. In 1874 gebruikte Harry Govier Seeley de naam Ceteosauria en zag de groep als dinosauriërs.[2] In 1877 plaatste Marsh Atlantosaurus en Apatosaurus in de Atlantosauridae, de eerste sauropode "familie". Toen hij in 1878 de Sauropoda benoemde, werd dat zeker niet meteen algemeen geaccepteerd: tot ver in de twintigste eeuw zouden sommige onderzoekers de termen Opisthocoelia of Cetiosauria — nu gespeld met een "i" — blijven gebruiken.

Een mogelijke stamboom van de Sauropoda is de volgende:

Sauropoda

Vulcanodon


Eusauropoda

Shunosaurus


unnamed

Barapasaurus


unnamed

Patagosaurus


unnamed

Omeisaurus



Mamenchisaurus



unnamed

Jobaria


Neosauropoda

Haplocanthosaurus



Diplodocoidea


Macronaria

Camarasaurus


Titanosauriformes

Brachiosaurus


Somphospondyli

Euhelopus



Titanosauria











Ontdekkingsgeschiedenis[bewerken]

Cardiodon

In 1841 werd door de Brit Richard Owen de eerste sauropode benoemd: Cardiodon.[3] Dat was op basis van twee tanden, dus Owen had nog helemaal geen beeld van hoe sauropoden eruitzagen. Toch waren er al veel uitgebreidere resten van gevonden. Verschillende verzamelaars hadden in Engeland losse botten verworven van reusachtige dieren die door Georges Cuvier waren gedetermineerd als uitgestorven walvissen. Owen had daarvan een aantal in bruikleen of ten geschenke gekregen en hetzelfde jaar benoemde hij een tweede geslacht: Cetiosaurus, het "zeemonsterreptiel".[4] Onder de vondsten was geen schedelmateriaal dus Owen legde geen enkel verband tussen de twee geslachten. Zoals de naam al aangeeft, dacht hij dat Cetiosaurus een gigantisch zeereptiel was, het grootste tot dan toe gevonden, een oude tegenhanger van de huidige walvissen. Het zou een carnivoor zijn geweest die op krokodillen en Plesiosauria joeg. Hij begreep helemaal niet dat het om een dinosauriër ging en toen hij in 1842 de groep Dinosauria benoemde, werd Cetiosaurus daar niet onder gerekend.

Het opperarmbeen van Pelorosaurus

In 1850 werd de eerste sauropode benoemd waarvan door de beschrijver Gideon Algernon Mantell begrepen werd dat het om een landdier ging: Pelorosaurus waarvan onder andere een arm was gevonden.[5] In 1852 benoemde Mantell een tweede soort: P. becklesii, later hernoemd tot Haestasaurus, die belangrijk is omdat het materiaal de eerst bekende huidafdruk van een sauropode omvat.[6] Hetzelfde jaar werd in Frankrijk de eerste sauropode buiten Engeland benoemd: Aepisaurus.[7] In 1859 volgde de eerste sauropode buiten Europa, Astrodon uit de Verenigde Staten van Amerika. Intussen bleven er in Engeland losse botten gevonden worden. In 1870 benoemde Harry Govier Seeley Ornithopsis, gebaseerd op wervel waarvan deze als eerste onderkende dat ze gepneumatiseerd waren, dus doortrokken van luchtholten die in verbinding stonden met het ademhalingssysteem.[8] De conclusie die deze daaruit trok: dat het ging om een reusachtig vliegend reptiel uit de Pterosauria, of althans een verwant daarvan, laat zien hoe gebrekkig de kennis over de sauropoden nog was.

In 1871 kwam hierin abrupt verandering toen John Phillips Cetiosaurus oxoniensis benoemde op basis van een vrij compleet skelet gevonden in 1869.[9] Weliswaar ontbrak daarvan de schedel en was ook de lange nek nog onbekend maar wel werd duidelijk dat het om een op vier rechte poten staand landdier ging. Daarvan overwoog hij ook of het geen dinosauriër kon zijn, puur op basis van de omvang. Dat was hem in een briefwisseling gesuggereerd door Thomas Huxley.

Ryders reconstructie van Camarasaurus

Het jaar 1877 zou een aantal grote doorbraken kennen in het sauropodenonderzoek. Om te beginnen benoemde Richard Lydekker Titanosaurus op basis van materiaal in India gevonden.[10] Dat was de eerste sauropode die uit continenten voortkomend uit het zuidelijke supercontinent Gondwana bekend werd. Daarnaast was het de eerste gevonden vertegenwoordiger, en naamgever, van de Titanosauria, een van de meest soortenrijke groepen sauropoden. In de USA werden nog veel belangrijkere ontdekkingen gedaan. Twee Amerikaanse paleontologen, de professoren Othniel Charles Marsh en Edward Drinker Cope, waren in hun Bone Wars begonnen te rivaliseren wie de meeste prehistorische soorten kon benoemen. Ze huurden verzamelaars in om zoveel mogelijk van het Wilde Westen af te stropen. Bij de Como Bluff werden hele beenderlagen ontdekt van sauropoden, de eerste door Arthur Lakes in maart 1877. Marsh zou op basis hiervan iconische geslachten benoemen als Brontosaurus, Apatosaurus en Diplodocus, terwijl Cope Camarasaurus beschreef. Het haastwerk leverde beschrijvingen op van lage kwaliteit en op grond van niet-diagnostisch materiaal werden vele nomina dubia benoemd, dus namen voor botten waarvan weinig meer gezegd kan worden dan dat ze tot een of andere sauropode behoorden. Maar het algemene beeld van sauropoden werd enorm verbeterd. In 1877 liet Cope de kunstenaar John Ryder voor het eerst een compleet skelet van een sauropode afbeelden, van Camarasaurus, en wel op ware grootte op een canvas van vijftien meter lengte zodat het voor lezingen gebruikt kon worden. Cope onderkende hierin voor het eerst de lange nek die zo typisch is voor de groep, hoewel hij die nog kaarsrecht uit de romp liet steken. In 1878 benoemde Marsh de Sauropoda. In 1883 publiceerde hij als eerste een skeletdiagram. In 1884 beschreef hij de eerste bekende sauropode schedel, die hij aan Diplodocus toewees. Marsh kon ook als eerste een redelijke gewichtsschatting maken: twintig ton voor Brontosaurus.

AMNH 460, het eerste opgestelde sauropodenskelet

Rond 1900 beleefde het sauropodenonderzoek een eerste hoogtepunt. Amerikaanse en andere musea wedijverden met elkaar wie de meest spectaculaire skeletten kon opstellen. Ze zonden expedities uit naar nieuwe vondstgebieden. In 1893 benoemde Lydekker de eerste sauropoden uit Zuid-Amerika waaronder het geslacht Argyrosaurus. Daarnaast begon men systematisch te theoretiseren over de bouw en het gedrag van de dieren. Henry Fairfield Osborn begreep in 1899, in het kader van een vernieuwde reconstructie van Diplodocus, als eerste dat de staartbasis horizontaal gehouden werd en dat de staartspieren de achterpoot aandreven.[11] In 1904 reconstrueerde hij als eerste de hand correct verticaal.[12] In 1897 werd een tekening van Charles Knight gepubliceerd die als eerste sauropoden als levende dieren afbeeldde.[13] De illustratie liet ze onder water zien, van de toen populaire gedachte uit dat ze te zwaar waren om hun eigen gewicht op het land te dragen. Dit werd in 1904 tegengesproken door Elmer Samuel Riggs toen die Brachiosaurus beschreef: de smalle handen en rechte ledematen waren duidelijke aanwijzingen dat het landdieren waren. In februari 1905 werd in het American Museum of Natural History voor de eerste maal een sauropodenskelet opgesteld, specimen AMNH 460 van Brontosaurus. Drie maanden later volgde het Carnegie Museum met een skelet van Diplodocus waarvan Andrew Carnegie zelf vele afgietsels liet maken die hij aan andere landen cadeau deed.

Van 1909 tot en met 1912 werden in Duits Oost-Afrika de duurste en meest uitgebreide paleontologische expedities uit de wereldgeschiedenis uitgevoerd, waarbij in de Tendaguruformatie resten werden gevonden van wat toen nog Brachiosaurus brancai heette maar tegenwoordig Giraffatitan genoemd wordt. In Berlijn werd het nog steeds grootste authentieke skelet van een sauropode neergezet. Andere daar gevonden sauropoden zijn Dicraeosaurus, Tornieria, Australodocus, Janenschia en Tendaguria.

CM 11338

In 1915 publiceerde William Diller Matthew het eerste populair-wetenschappelijke boek over dinosauriërs: Dinosaurs.[14] Zestig jaar lang zouden andere boeken voor een groter publiek een herhaling zijn van Matthews tekst. Sauropoden werden erin beschreven als lompe domme beesten waarvan het lichaamsgewicht door de opwaartse kracht van het water gedragen moest worden. Op dat moment liep het aantal opgravingen in de USA al terug. Wel werden de al gevonden botten steeds beter beschreven. In 1921 publiceerde Osborn een beschrijving van Camarasaurus die nog steeds de meest uitgebreide monografie is die ooit aan een sauropode is gewijd.[15] In 1925 beschreef Charles Whitney Gilmore een jong van Camarasaurus, specimen CM 11338, zeer gedetailleerd. Het was de eerste keer dat een getekende reconstructie van een sauropodenskelet op één enkel individu gebaseerd was.[16] In tussen werden in steeds ruimere gebieden vondsten gedaan. In 1913 werd de eerste sauropode in China gevonden, die in 1929 door Carl Johan Josef Ernst Wiman werd benoemd als Helopus, de tegenwoordige Euhelopus. In 1939 beschreef Roland Thaxter Bird voor de eerste keer versteende voetafdrukken van sauropoden.[17]

Tijdens de Tweede Wereldoorlog viel paleontologisch onderzoek door geldgebrek vrijwel stil. Erna kwam het maar langzaam weer op gang. Sauropoden werden hierdoor extra zwaar getroffen omdat hun skeletten zo groot waren en het opgraven dus veel te duur. Men had de indruk dat de meeste soorten intussen wel gevonden waren en de groep als zodanig, een stel moerasbewoners dat op een evolutionair dood spoor was beland, vond men weinig interessant.

In 1968 begon hier verandering in te komen door het werk van Robert Thomas Bakker dat leidde tot de "dinosauriërrenaissance". In diens visie waren dinosauriërs de warmbloedige tegenhangers van de huidige grote zoogdieren. Hij liet Osborns hypothese herleven dat sauropoden landbewoners waren. In dat geval zouden ze vele evolutionaire vernieuwingen moeten hebben ontwikkeld om hun grote lichaam voort te bewegen en te voeden. In plaats van saai waren sauropoden dus een biomechanisch hoogtepunt van de evolutie geweest. Een eerste bijval hierin kreeg Bakker van Walter Preston Coombs. Langzamerhand werden Bakkers inzichten dominant. Voor ze algemeen werden aanvaard veroorzaakten ze zoveel controverse dat hierdoor alleen al het onderzoek sterk gestimuleerd werd.

Tegelijk met de herleving van het theoretische werk kwam ook het veldonderzoek weer op gang. Door de groei van het massaonderwijs nam het aantal universitaire onderzoeksteams sterk toe, vooral in de Derde Wereld. In China, dat nu systematisch geologisch onderzocht werd en waarvan de bodem omgewoeld werd door talloze bouwprojecten, vond men talrijke skeletten en soorten van Omeisaurus en Mamenchisaurus. Nog rijkere vindplaatsen werden aangetroffen in Argentinië, welk land sinds de jaren tachtig een bijna onafgebroken stroom nieuwe sauropoden oplevert. Het tempo van de vondsten versnelde daarbij. Michael P. Taylor telde dat tussen 1841 en 1920 twintig naar huidige normen geldige geslachten van sauropoden waren benoemd, dus gemiddeld één per vier jaar. In 2006 was dat toegenomen tot 136 waarvan de helft sinds 1993 was beschreven — dus met een tempo van gemiddeld vier per jaar — en de zes meest vruchtbare jaren in de eenentwintigste eeuw vielen. Niet alleen werden er steeds meer sauropoden benoemd, ook de bekende verscheidenheid in bouw nam toe.[18] Rond 2010 piekte het aantal benoemde geslachten. In 2013 was het toegenomen tot 204 en het tempo dus tot gemiddeld tien per jaar.[19] Veel van de nieuwe soorten waren Titanosauria, welke groep nu ongeveer een derde van het totaal uitmaakte.

Houding[bewerken]

Hoewel deze vormen kennelijk een evolutionair voordeel bezaten bij het zo groot mogelijk worden, zijn er veel aanpassingen om het gewicht voor een gegeven grootte zo laag mogelijk te houden. Over het algemeen zijn de botten elegant gevormd en vooral de wervels zijn hol van binnen. Er zijn sterke aanwijzingen dat de sauropoden ademden via luchtzakken. Ze waren niet erg gespierd en hun maximumsnelheid kan niet hoger gelegen hebben dan zo'n 25 km/u. Om het gewicht te dragen zijn de achterpoten recht; rennen was uitgesloten. De horizontale staart is meestal lang; vaak wordt dat omschreven als een tegenwicht voor de zeer lange nek, hoewel er bij langzame viervoeters als de sauropoden nauwelijks sprake zal zijn geweest van een echte balanswerking.

Misschien konden sauropoden op de achterpoten staan

Over de functie van die nek zijn de meningen zeer verdeeld. Sommige vormen, zoals Brachiosaurus en zijn verwanten, lijken duidelijk te zijn aangepast aan het eten van hoge takken. Vaak spreekt men hierbij van het "eten in de boomtoppen", maar er waren toen al coniferen van 120 meter hoogte. Hun schouders zijn hoger dan het bekken. Bij andere vormen is dat andersom: bij Apatosaurus is de nek naar beneden gericht. Dit wordt op twee manieren verklaard. Volgens één theorie konden de dieren zich op hun achterpoten oprichten en staken zo de lange nek de bomen in. Een aanwijzing voor deze functie ziet men in de lengte van de doornuitsteeksels op de ruggenwervels ter hoogte van het bekken die als een soort hefboom konden dienen. Het is niet duidelijk of de spieren in staat zouden zijn geweest de forse lichaamsmassa zo te heffen. Natuurlijk zouden de beesten ook hun voorpoten op een heuveltje hebben kunnen doen rusten. Volgens een andere theorie graasden de dieren varens en cycaden op de grond en was de nek alleen zo lang om de energiekosten van het doen van een paar stappen te besparen.[20] Het is echter omstreden of die kosten werkelijk hoger waren dan die van het doen groeien, in stand houden en bewegen van de nek en het inlaten van verse lucht over een lengte van soms dertien meter (vandaar overigens de luchtzakken). Dit — als het al bestaat — zeer relatieve voordeel moet dan weer afgezet worden tegen het voordeel om niet acuut te verhongeren als al het lagere groen opgevreten is. Veel sauropoden leefden in een klimaat dat duidelijk een droge periode kende.

De nek van sauropoden maakte ten opzichte van het hart een hoogte van de kop tot twaalf meter mogelijk

Ook over de beweeglijkheid van de nek bestaat veel onenigheid. Volgens sommigen kon de nek alleen sterk zijwaarts en neerwaarts gebogen worden maar slechts heel beperkt naar boven. Er zijn computerprogramma's ontwikkeld die dit zouden aantonen, maar de daar ingevoerde data hebben een vrij grote foutmarge. Omdat de meeste fossielen sterk vervormd zijn is het zeer lastig de precieze onderlinge bewegingsvrijheid van de nekwervels te bepalen, iets wat verder bemoeilijkt wordt door onzekerheid over de dikte van het kraakbeen dat de botten bedekte en de tussenwervelschijven. In levende dieren is de nek meestal beweeglijker dan het naakte skelet alleen toestaat. Als de achterste nekwervels een onderlinge hoek konden maken van tien graden dan konden de meeste soorten — met uitzondering van de Diplodocidae en Dicraeosauridae — het rechtere middenstuk van de nek zo'n zestig graden omhoog steken. Alle huidige Tetrapoda houden de nek in een rustpositie vrij sterk geheven en dat is als een aanwijzing gezien dat dit bij de Sauropoda ook het geval was.[21]

Een ander probleem is of de bloeddruk vereist om de hersenen aan het eind van de lange nek van zuurstof te voorzien wel gehaald kon worden en of deze in dat geval niet te gevaarlijk hoog lag. Het is wel aangenomen dat het hart extra groot was, met een gewicht van twee ton voor de oppompende linkerhelft die 64% van het energiebudget van het lichaam zou opslokken,[22] dat er een soort steunharten in de nek aanwezig waren,[23][24] of dat net als de aderen ook de slagaderen kleppen bezaten. Een studie uit 2016 concludeerde dat het vasculaire systeem in de nek als een hevel werkte volgens de Wet van Bernoulli en dat met een bloeddruk gelijk aan die van een giraffe, maximaal 235 mmHg, waarvan we dus weten dat die in beginsel veilig gehandhaafd kon worden, een verticale neklengte van twaalf meter mogelijk was. Dat de feitelijke maximale neklengte bij sauropoden daarbij in de buurt ligt, zou bewijzen dat de hoogte van twaalf meter een biomechanische begrenzing vormde die evolutionair niet doorbroken kon worden. Omdat het heveleffect afhankelijk is van de luchtdruk zouden sauropoden in berggebieden hun koppen lager hebben moeten houden: bij een hoogte van vierduizend meter mag de kop maar acht meter hoger gehouden worden dan het hart. Om zo'n systeem te laten werken moeten wel de aderen in de nek extra verstevigd zijn teneinde te voorkomen dat ze in elkaar zouden klappen door de zuigende werking van het neergaande bloed.[25]

Stofwisseling[bewerken]

Een ander twistpunt vormt de vraag of de sauropoden warmbloedig of koudbloedig waren. Sommige dinosauriërs waren vrijwel zeker warmbloedig, zoals de Coelurosauria. Het is bepaald waarschijnlijk dat ook de meeste Theropoda en Ornithopoda endotherm waren. Het is plausibel dat de Sauropodomorpha zelf afstamden van kleine roofsauriërs met een verhoogd metabolisme. Toch zijn er gegevens en overwegingen die er op duiden dat de sauropoden weleens een vrij trage stofwisseling konden hebben bezeten. Om te beginnen hield het een voordeel in om zo min mogelijk energie aan verwarmingskosten te besteden. Daarbij kwam dat volwassen sauropoden juist het gevaar liepen van hyperthermie (oververhitting) omdat de massa van hun gigantische lichaam zo makkelijk warmte vasthield: ze waren dus al gigantotherm. De enige vondsten van de huid van babysauropoden duiden op schubben, niet op een isolerend verenkleed: warmbloedige kleintjes zouden dus van de kou sterven. In de gebieden die in het Mesozoïcum in de poolstreken lagen, zijn vondsten van sauropoden zeer zeldzaam.

Al deze argumenten zijn echter niet strikt dwingend. Omdat sauropoden zo groot waren konden ze relatief gemakkelijk aan voedsel en water komen. Een groot dier beweegt efficiënter, kan vetreserves opbouwen en loopt minder het gevaar van uitdroging. Coniferen vormen een rijke energiebron die door middel van maagstenen (sauropoden konden niet kauwen) goed benut kon worden. De selectiedruk voor energiebesparing was dus gering. Omdat ze al gigantotherm waren, vielen de kosten van echte warmbloedigheid erg mee. De lichaamsmassa vormde ook een bescherming tegen temperatuurstijging door zonnestraling en dus konden ze het zich veroorloven de temperatuur 's nachts niet te laten afnemen. De strenge regulering van de lichaamstemperatuur bij warmbloedigheid bouwde dan een extra veiligheid in. En ook bij sauropoden gold dat warmbloedige dieren koudbloedige dieren kunnen wegconcurreren omdat ze juist door het hogere energieverbruik meer van het voedsel kunnen - en zullen - opeten. Misschien waren ze juist hierom zeldzaam in de poolstreken dat de warmbloedige jongen niet tegen de kou beschermd waren.

Sociaal gedrag[bewerken]

Alle theorieën over het gedrag van uitgestorven dieren hebben natuurlijk een sterk speculatief element. We kunnen de beesten immers niet meer direct waarnemen. Bij de sauropoden is er dan nog het bijkomend probleem dat er eigenlijk geen moderne dieren zijn die in grootte met ze overeenkomen en een aanwijzing voor hun levenswijze zouden kunnen opleveren. De beste gegevens levert nog wel de ichnologie, de wetenschap van het sporenonderzoek. Gefossiliseerde voetafdrukken van sauropoden zijn niet héél zeldzaam en lijken aan te tonen dat de dieren in kudden leefden. In Argentinië zijn broedkolonies gevonden met eieren van het type dat aan sauropoden toegeschreven wordt. Het is zeer onduidelijk hoe de broedzorg in zijn werk ging. Er was een enorm verschil in grootte tussen volwassen dieren en pas uitgekomen jongen. Misschien werden de kleintjes gewoon aan hun lot overgelaten: door het grote aantal eieren dat een moeder kon leggen, kon ze het zich veroorloven er veel te verliezen, de zogenaamde r-strategie in de voortplanting. Aan de andere kant kennen de nauwst nog levende verwanten, de vogels, juist een uitstekende broedzorg. Ook wijst de botstructuur op een zeer snelle groei — overigens een sterke aanwijzing voor warmbloedigheid. Sauropodenwijfjes werden rond hun vijftiende geslachtsrijp en de dieren benaderden tegen hun dertigste hun maximumgrootte.[26] De jongen waren misschien al snel groot genoeg om met een kudde verder te trekken. De broedkolonies werden kennelijk vele jaren achtereen gebruikt. In dat geval moesten de moeders voor de eierleg grote vetvoorraden hebben opgebouwd want een grote groep sauropoden zou al snel de wijde omgeving volledig hebben kaalgevreten. Waar het voedsel voor de jongen dan vandaan kwam, blijft nog een mysterie.

Het leven in een kudde zou bescherming hebben geboden aan het individu. Dat kon zich echter ook in zijn eentje verdedigen. Als passieve bescherming hadden de meeste soorten vermoedelijk allerlei schubuitsteeksels, bijvoorbeeld als een rij op de rug zoals bij Diplodocus. Soms waren die verbeend tot een echt pantser (zoals bij Saltasaurus) of staken de doornuitsteeksels zelf uit (Amargasaurus). Een actieve verdediging was mogelijk door het slaan van de staart waarvan het uiteinde dan als een zweep werkte of voorzien was van een benen knuppel; ook kon een dier zich misschien opheffen om zich met de sterke duimklauwen te verdedigen of om een aanvaller gewoon te verpletteren met zijn sterkste wapen: zijn gewicht.

Soms wordt betwijfeld of sauropoden wel intelligent genoeg waren voor enige vorm van sociaal gedrag. Met ongeveer twee gram hersenen per ton hoort hun encefalisatiegraad inderdaad tot de laagste onder de gewervelde landdieren. Het is echter zeer de vraag of de relatieve hersengrootte wel zo belangrijk is en of de geëxtrapoleerde statistische curves wel bruikbaar zijn in deze extreme gevallen. Als ze warmbloedig waren, zouden ook hun hersenen tot een tienmaal hogere activiteit in staat zijn geweest. Een gelijkstellen aan moderne reptielen is dus zeer riskant.

Krijt[bewerken]

Tot enkele jaren geleden werd gedacht dat de sauropoden hun hoogtepunt in het Jura bereikten en toen in het vroege Krijt bijna uitstierven. Recente vondsten tonen echter aan dat dit alleen voor Noord-Amerika geldt. Op de andere continenten bleef de vormenrijkdom welig tieren; ongeveer een vijfde van alle beschreven dinosauriërs behoort tot de sauropoden. De onderlinge verwantschap van al deze vormen is er echter niet duidelijker op geworden. Hierbij vormt het een groot probleem dat de resten vaak fragmentarisch zijn en juist de schedel, die als samensmelting van vele beenderen het meest informatief is, bij de fossielen van sauropoden vaak ontbreekt.

Op het eind van het Krijt stierven alle sauropoden uit. De theorie binnen de cryptozoölogie dat er in de bossen van het Kongogebied nog een brontosauriër zou leven, is juist hierom cryptozoölogisch (onwaarschijnlijk) omdat zij uitgaat van allerlei onjuiste vooroordelen over sauropoden: dat ze in moerassen zouden leven (het waren juist uitgesproken landdieren) of dat ze niet zouden kunnen concurreren met moderne zoogdieren (er is juist geen enkel modern groot dier dat volwassen coniferen kan verteren).

Evolutie van de tandbreedte[bewerken]

Sinds lang worden de sauropoden ingedeeld in geslachten die brede tanden hebben en geslachten die smalle tanden hebben.[27] In het late Jura kwamen beide tandvormen tezamen voor en enkel de smalle tandvorm bleef behouden tot op het einde van het Krijt.[28][29] De tendens om de tanden te versmallen begon in het vroege Krijt, een periode in de evolutie van de sauropoden waarvan weinig bekend is, vooral in Noord-Amerika.[30] Men vermoedt dat sauropoden in Noord-Amerika na het Albien (laat Onder-Krijt) uitstierven. Tijdens het Maastrichtien (laat Boven-Krijt) migreerden zij via Zuid-Amerika of Azië weer naar Noord-Amerika.[31]

Men gebruikt de ratio tandhoogte/tandbreedte ("slenderness index" ("SI"))[32] om grote veranderingen in tandmorfologie bij sauropodomorfe dinosauriërs te onderzoeken, voor de indeling van sauropoden in de groep met brede tanden (SI ≤ 4.0) en in de groep met smalle tanden (SI ≥ 4.0) en om de graduele vervanging van brede door smalle tanden tijdens het Krijt te herkennen.[28] Prosauropoden, de mogelijke parafyletische vooroudergroep van de latere sauropoden, hadden gedurende hun veertig miljoen jaar lange evolutie een SI van 1,56 tot 2,43. Deze ratiowaarde kan als de primitieve conditie voor sauropoden beschouwd worden. Prosauropoden en basale sauropoden hadden overlappende SI's wanneer zij gedurende bijna twintig miljoen jaar tijdgenoten waren. Opmerkelijk genoeg ontwikkelden basale sauropoden bredere tanden dan prosauropoden in hun vroege evolutie en bereikten op het einde van het Midden-Jura hun grootste tandbreedte (SI = 1,16). Alhoewel prosauropoden en basale sauropoden overlappende SI's hebben, weten we niet of zij voedselconcurrenten waren. Basale sauropodomorphen en basale sauropoden komen tezamen in slechts weinig formaties voor, bv. in de Onder- en Boven-Elliot-formatie van Zuid-Afrika en Lesotho (tijdsnede Norien (Boven-Trias) tot Sinemurien (Onder-Jura) van de Stormberg Groep).[33][34][35][36] Er is heel weinig tijdsoverlapping tussen het voorkomen van basale sauropoden en de meer afgeleide neosauropoden (superfamilies Diplodocoidea en Macronaria). De indeling van sauropoden in basale sauropoden en in neosauropoden is op hun stratigrafische verspreiding langs elke kant van de overgang midden-laat Jura gebaseerd.[37]

Met het verschijnen van diplodocoïde geslachten zoals Apatosaurus en Diplodocus tijdens het late Jura, vond de vroegste tandversmalling buiten de primitieve prosauropode conditie plaats. Een opmerkelijk hiaat in hun SI scheidt de Diplodocoidea van hun neosauropode tijdgenoten. Nog onbekende fylogenetische intermediaire geslachten uit het vroege Boven-Jura of uit het Midden-Jura kunnen dit hiaat opvullen. De grootste tandbreedte werd tijdens het late Jura bereikt. Daarna werden de tanden van neosauropoden (Diplodocoidea en Macronaria) snel smaller. De SI van Diplodocoidea en Macronaria overlappen niet, niettegenstaande zij bijna 50 miljoen jaar tijdgenoten waren. Tijdens het late Jura en het vroege Krijt hadden Macronaria een breed SI-spectrum, maar bereikten nooit de tandsmalte van Diplodocoidea. Na het uitsterven van deze laatste aan het begin van het late Krijt evolueerden de Macronaria naar de smalle tandvorm die eerder voor de Diplodocoidea kenmerkend was, en namen de vrijgekomen niche in die voortaan dus enkel uit geslachten met smalle tanden zou bestaan. Abydosaurus mcinthoshi (superfamilie Macronaria, familie Brachiosauridae), uit het Albien (laat Onder-Krijt) van de Cedar Mountain-formatie van Utah (Verenigde Staten) neemt een intermediair stadium in. De tanden zijn bij dit geslacht smaller dan bij basale Sauropodomorpha en basale sauropoden, maar niet zo smal als bij diplodocoïden of titanosauriërs. Abydosaurus maakt deel uit van een groep uit het late Onder-Krijt waarvan de tanden smaller zijn dan bij hun voorgangers en geeft een wijziging aan in de tandbreedte die onafhankelijk schijnt te zijn van de tendens om de tanden bij diplodociden uit het Late Jura en bij titanosauriërs uit het Krijt te versmallen. Deze wijziging bracht geen belangrijke veranderingen met zich qua absolute en relatieve biodiversiteit onder sauropoden en qua aantal individuen. Deze factoren bleven relatief stabiel door het Krijt heen,[38] buiten een kleine terugval in het midden van het Krijt die samenvalt met een vermindering van het aantal sedimenten die fossielen van dinosauriërs bevatten.[39][40] Op het einde van het Krijt zijn de Titanosauria de enige overgebleven sauropoden. Deze hebben de smalste tanden van alle sauropodomorfe dinosauriërs.

Verband evolutie tandbreedte met evolutie flora?[bewerken]

De samenstelling van de flora onderging tijdens het Krijt een belangrijke wijziging. Het was tijdens dit geologisch tijdperk dat de overgang van een breed scala tandbreedtes naar overwegend en later uitsluitend smalle tanden plaatsgreep. Door de functionele implicaties van smalle tanden te bestuderen, kan men eventuele oorzakelijke verbanden tussen de veranderingen in de toenmalige flora en de aanpassingen van de tanden van sauropoden aantonen. Een toename van het aantal tanden bij sauropoden is het gevolg van het smaller worden van de tanden. Per functionele tand hebben Diplodocoidea, die hele smalle tanden hebben, zeven vervangingstanden. Bij Nigersaurus was er tandvervanging om de dertig dagen,[41] bij Diplodocus om de vijfendertig dagen.[42] Bij sauropoden met brede tanden is de vervangingssnelheid lager, om de 62 dagen bij bijvoorbeeld Camarasaurus.[43] Ornithischia met tandbatterijen (Hadrosauroidea) vervangen hun tanden minder snel dan Sauropoda met smalle tanden. Edmontosaurus vervangt elke vijftig dagen de tanden en is hiermee de hadrosauroïde die de tanden het snelst vervangt.[44] Ook de tandvorming gaat, naast de tandvervanging, bij de smaltandige Diplodocus bijna tweemaal zo snel als bij de breedtandige Camarasaurus (resp. ongeveer 185 dagen tegenover ongeveer 315 dagen).[43] De functionele tand en de vervangingstand zijn in een gebit waar tanden snel vervangen worden bijna even groot. De tanden zullen meer in afmetingen verschillen in een gebit waar ze traag vervangen worden. Smalgetande Macronaria hebben, zoals Diplodocoidea, tandgroepen waarvan de tanden bijna even groot zijn, wat impliceert dat ook zij snel vervangen werden.[42] Chure et al.[43] veronderstellen dat de hoge vervangingssnelheid bij smalle tanden suggereert dat ze aan hevige slijtage onderhevig waren. Deze slijtage kan door één of meerdere factoren veroorzaakt zijn, zoals het dieet, de bijt en/of kauwmechanismen en de voedselecologie. Hoewel vele auteurs een verband tussen de oorsprong en verspreiding van de bedektzadige planten en veranderingen in de fauna van plantenetende dinosauriërs gesuggereerd hebben,[45] besloten meer recente studies dat er geen aanwijsbaar evolutionair verband bestaat tussen de voornaamste gebeurtenissen in de evolutie van dinosauriërs en planten.[46][47][48][49][50]

Van het Albien, de bovenste etage van het Onder-Krijt (ca. 113,0 tot 100,5 Ma), tot het einde van het Krijt maakten naaldbomen en bedektzadige planten 80% uit van de flora.[38] Sauropoden zullen dus doorgaans meer met deze planten dan met andere in contact gekomen zijn. Ondanks het 'tijdsverband' tussen de wijzigingen in de tandbreedte bij sauropoden en het overvloedig voorkomen van bedektzadige planten en naaldbomen, zijn deze niet in het bijzonder slijtend en zouden dus geen grote slijtagesporen hebben kunnen achterlaten. De huidige bedektzadigen en naaldbomen bevatten minder siliciumdioxide dan andere plantengroepen. Er bestaan aanwijzingen voor de aanwezigheid van hedendaagse grassoorten in het Krijt. Zij waren ecologisch niet overheersend[51]. Onder meer de hedendaagse varen Osmunda en de hedendaagse zaadvaren Equisetum kwamen in het Mesozoicum voor. Deze planten zijn zeer abrasief[52] en verteerbaar en voedzaam[53]. Er zijn geen bewijzen dat sauropoden deze planten aten, maar daar zij siliciumdioxide opslaan kunnen zij een potentiële abrasieve voedselbron geweest zijn. Tot op heden werden nog geen plantenresten, gastrolieten en coprolieten in associatie met sauropodenskeletten gevonden. Matley[54] beschreef overvloedige, goed bewaarde coprolieten uit de Indiaase Lameta-formatie van het late Krijt. In die formatie zijn sauropoden de enige grote herbivoren en zij komen overvloedig voor. De coprolieten bevatten resten van zaadvarens (Pteridophyta), gymnospermae, grassen en andere angiospermen, die dus een gemengd en abrasief dieet vertegenwoordigen[55][56].

Ondanks overeenkomsten in de schedelvormen van sauropoden met smalle tanden, waarvan sommige geslachten een verlengde schedel hebben met vooraan weinig tanden, is er geen bewijs dat de mechanica van deze schedels de tandslijtage zou versnellen. Eigenlijk is de belasting gegenereerd door de kauwspieren op de achteraan geplaatste tanden in een verlengde schedel met lange kaken normaliter lager dan de belasting gegenereerd door een schedel met kortere kaken en met een proportioneel langere tandenreeks. Verschillen in de richting van de bijtkracht zouden normaliter geen grote toename van tandslijtage veroorzaken. Dit suggereert dat de wijziging in tandbreedte verband kan houden met andere factoren dan kaakmechanica, bijvoorbeeld een verandering in dieet en/of in voedselecologie.

Alhoewel smaltandige sauropoden geen monofyletische groep vormen, hebben bepaalde geslachten van de twee voornaamste evolutielijnen toch gemeenschappelijke kenmerken aan de schedel. Het smaller worden van de tanden bij zowel afgeleide Titanosauria, zoals Nemegtosaurus en Rapetosaurus, als bij afgeleide Diplodocoidea, zoals Nigersaurus en Diplodocus, resulteerde in vooraan in de kaak geplaatste tanden.[57] Een tandplaatsing die beperkt is tot vooraan in de schedel, tezamen met een verlengde schedel, versnelde tandvervanging en een verticale stand van de schedel, in combinatie met gegevens over tandslijtage, werden voor Nigersaurus als een aanpassing aan laag grazen geïnterpreteerd. Upchurch en Barrett[58] beschouwen Diplodocoidea als lage grazers. In 2010 waren vergelijkbare gegevens met betrekking tot de stand van de schedel bij Titanosauria nog niet beschikbaar, maar de verlengde schedel met tanden die snel vervangen werden en waarvan de plaatsing beperkt bleef tot vooraan in de schedel, kunnen erop wijzen dat sommige titanosauriërs ook lage grazers waren. De overschakeling bij sauropoden uit het Krijt naar tanden die onderhevig waren aan zware slijtage en die snel vervangen werden, schijnt niet in verband te staan met een belangrijke verandering in de globale floradiversiviteit, ondanks het samenvallen van deze verandering met een toegenomen overvloed aan coniferen en bedektzadigen. Dit patroon kan integendeel te wijten zijn aan een overschakeling naar het verbruiken van sterk abrasieve vegetatie of een verschuiving naar laag grazen.