Uranium

Uit Wikipedia, de vrije encyclopedie
Ga naar: navigatie, zoeken
Uraan / Uranium
Periodiek systeem
H He
Li Be B C N O F Ne
Na Mg Al Si P S Cl Ar
K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
Cs Ba * Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
Fr Ra ** Rf Db Sg Bh Hs Mt Ds Rg Cn Uut Fl Uup Lv Uus Uuo
* La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
** Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr
Uranium
Uranium
Algemeen
Naam Uraan / Uranium
Symbool U
Atoomnummer 92
Groep Scandiumgroep
Periode Periode 7
Blok F-blok
Reeks Actiniden
Kleur Grijs metalliek
Chemische eigenschappen
Atoommassa (u) 238,03
Elektronenconfiguratie [Rn]5f3 6d1 7s2
Oxidatietoestanden +3, +4, +5, +6
Elektronegativiteit (Pauling) 1,38
Atoomstraal (pm) 139
1e ionisatiepotentiaal (kJ·mol−1) 597,64
Fysische eigenschappen
Dichtheid (kg·m−3) 18950
Hardheid (Mohs) 6,0
Smeltpunt (K) 1408
Kookpunt (K) 4404
Aggregatietoestand Vast
Smeltwarmte (kJ·mol−1) 15,5
Verdampingswarmte (kJ·mol−1) 420
Kristalstructuur Ortho
Molair volume (m3·mol−1) 12,49 · 10-6
Specifieke warmte (J·kg−1·K−1) 120
Elektrische weerstandΩ·cm) 20
Warmtegeleiding (W·m−1·K−1) 27,6
SI-eenheden en standaardtemperatuur en -druk worden gebruikt,
tenzij anders aangegeven
Portaal  Portaalicoon   Scheikunde
Uraniumerts.

Uranium of uraan is een scheikundig element met symbool U en atoomnummer 92. Het is een metallisch grijs actinide.

Ontdekking[bewerken]

Uranium werd in 1789 ontdekt door de Duitse scheikundige Martin Heinrich Klaproth in het mineraal pekblende. Het element werd genoemd naar de planeet Uranus, die acht jaar eerder was ontdekt.

De zoektocht naar en ontginning van radioactieve ertsen begon in de Verenigde Staten aan het begin van de 20e eeuw. Er werden toen bronnen van radium gezocht, voor gebruik in lichtgevende verf voor wijzers in horloges en dergelijke. Radium werd gevonden in uraniumerts. In 1935 werd de belangrijkste uraniumisotoop, 235U, ontdekt door de Canadees-Amerikaanse natuurkundige Arthur Jeffrey Dempster. Uranium werd voor de defensie-industrie van belang gedurende de Tweede Wereldoorlog. In 1943 werd in Colorado uranium gewonnen voor het Manhattanproject. Maar uiteindelijk werd het meeste uranium voor het Manhattanproject en vooral voor de atoombom Little Boy geleverd door de Belgische regering in ballingschap, vanuit Belgisch-Congo. Er werd zelfs Duits uranium gebruikt dat was buitgemaakt op de onderzeeboot U-234.

Rond 1960 nam de behoefte aan militair uranium in de Verenigde Staten af door de nucleaire ontwapening. Tegelijkertijd kwam er meer behoefte aan uranium voor gebruik in kernreactoren.

Toepassingen[bewerken]

Naast het genoemde gebruik van verrijkt uranium in kernwapens en kernreactoren wordt verarmd uranium vanwege de hoge dichtheid gebruikt als contragewicht in vliegtuigen (zie Bijlmerramp) en in munitie. Bovendien dient het als afschermingsmateriaal tegen ioniserende straling.[1] In Nederland is het gebruik van munitie met verarmd uranium op de oefenterreinen Vliehors en Noordvaarder sinds 1993 niet meer toegestaan. Wel wordt er nog verarmd uranium gebruikt voor de legering van Amerikaanse M1-tanks, omdat het door zijn hoge dichtheid moeilijk te doorboren is met kogels. Verarmd uranium vindt ook toepassing in antitankwapens. Het projectiel uit verarmd uranium doorboort het pantser. Het uranium brandt dan en verbruikt daarbij alle zuurstof binnen in de tank.

Opmerkelijke eigenschappen[bewerken]

Na raffinage is uranium een zilverwit licht radioactief metaal dat iets zachter is dan staal. Het is buigzaam, vervormbaar, een beetje paramagnetisch en heeft een zeer hoge dichtheid; 65% dichter dan lood. Als fijn verdeeld poeder reageert uranium met koud water en bij aanwezigheid van zuurstof wordt het langzaamaan bedekt met een laagje uraniumoxide.

Uraniumhexafluoride (UF6) is een witte, vaste stof, die al een damp vormt bij temperaturen boven 56°C. Het wordt gebruikt bij het verrijkingsproces van uranium. Verrijkt uranium bevat naar verhouding meer 235U en minder 238U dan in natuurlijk uranium aanwezig is.

Voorkomen[bewerken]

Uraniniet is het uraniumerts dat van nature het meest op aarde voorkomt. Het bestaat voornamelijk uit uraniumdioxide (UO2). Voor gebruik wordt dit verwerkt tot "Yellowcake". Dit bevat 70 tot 90 gewichtsprocent uraniumoxide (U3O8) en andere uraanverbindingen. Om 235U te winnen moeten grote hoeveelheden erts gedolven worden, want slechts 0,7% van al het uranium bestaat uit deze uraniumisotoop. Bij de mijn blijven in veel gevallen grote hoeveelheden radioactief afval en verzuurde modder achter.

Landen waar uranium wordt gevonden, zijn Namibië, Australië, Niger, Canada, Turkije, Rusland, de VS, Zuid-Afrika en vooral Kazachstan. Ook in Sudetenland in Tsjechië komt uranium voor. In februari 2003 werd uranium aangetroffen op 200 kilometer afstand van de stad Yazd in Iran.

In Nederland varieert de concentratie van uranium in de bodem tussen 0,4 en 8 milligram per kg droge aarde.[2] In Zeeland zijn in de Formatie van Breda fosforietknollen aangetroffen die tot 300 ppm uranium bevatten.

Isotopen[bewerken]

1rightarrow blue.svg Zie Isotopen van uranium voor het hoofdartikel over dit onderwerp.
Stabielste isotopen
Iso RA (%) Halveringstijd VV VE (MeV) VP
233U syn 1,592×103 j α 4,909 229Th
234U 0,0055 2,455×105 j α 4,859 230Th
235U 0,720 7,038×108 j α 4,679 231Th
236U syn 2,342×107 j α 4,572 232Th
238U 99,2745 4,468×109 j α 4,270 234Th

De twee voornaamste uraniumisotopen die op aarde voorkomen zijn 235U en 238U. 235U is nodig voor zowel kernreactoren als kernwapens, doordat het de enige splijtbare isotoop is die op aarde in voldoende mate wordt gevonden. De atoomkern kan niet alleen spontaan splijten met, zoals de tabel laat zien, een halfwaardetijd van 700 miljoen jaar, maar is ook splijtbaar door inslag (neutronenvangst) van een thermisch neutron ("langzaam" neutron, met een snelheid van enkele km/s). De isotoop 238U is ook belangrijk doordat deze neutronen absorbeert, waarbij hij vervalt naar 239Pu (plutonium), dat ook splijtbaar is door thermische neutronen. Ook de kunstmatige isotoop 233U is splijtbaar; deze wordt gevormd uit 232Th (thorium) door middel van een neutronenbombardement.

Kettingreactie[bewerken]

Uranium was het eerste element dat splijtbaar bleek te zijn. Bij de vangst van een thermisch neutron verandert de atoomkern in een geëxciteerde toestand van 236U, dat zich onmiddellijk opdeelt in twee kleinere atoomkernen, waarbij energie vrijkomt en bovendien nog meer neutronen. Dit zijn snelle neutronen (met een snelheid van duizenden km/s) die afhankelijk van de aanwezigheid van een moderator kunnen vertragen waardoor ze meer kans maken om een andere atoomkern te splijten. Afhankelijk ook van factoren zoals hoeveelheid en concentratie van het 235U en aan-/afwezigheid van stoffen die neutronen absorberen zonder dat daarbij nieuwe neutronen worden vrijgemaakt (zoals in een regelstaaf) en de aanwezigheid van een neutronenreflector (waardoor er minder kans is dat een neutron de splijtstof verlaat en er dus meer kans is dat het een atoomkern splijt) kan er eventueel een nucleaire kettingreactie plaatsvinden (zie ook kritische massa). Dit wordt toegepast in een kernreactor (continue gematigde kettingreactie) en een kernwapen (explosieve kettingreactie).

Zo'n twee miljard jaar geleden was de relatieve aanwezigheid van 235U dusdanig groot dat onder bijzondere omstandigheden een natuurlijke kettingreactie kon voorkomen. De enige plaatsen waarvan bekend is dat deze daar hebben plaatsgevonden liggen in de omgeving van Oklo in Gabon. Gedurende enkele honderdduizenden jaren kwamen daar kettingreacties voor in cycli van 3 uur, bestaande uit ongeveer 30 minuten van kritikaliteit (die stopte door het verdampen van water dat als moderator werkte) gevolgd door 2 uur en 30 minuten van afkoelen en instroom van nieuw water.

Toxicologie en veiligheid[bewerken]

Uranium en uraniumverbindingen zijn giftig. Bij blootstelling aan minder dan de dodelijke dosis bestaat er kans op schade aan de lever. Bij hogere doses kunnen ook andere organen onherstelbaar beschadigd raken. Daarnaast zijn alle uraniumisotopen radioactief en kunnen daardoor bij opeenhoping in het lichaam genetische schade aanrichten, die uiteindelijk kanker kan veroorzaken. Doordat uranium alleen alfastraling uitzendt, die niet door de huid dringt, is dit gevaar bij uranium dat zich buiten het lichaam bevindt niet aanwezig. In poedervorm is uranium brandbaar.

Zie ook[bewerken]

Externe links[bewerken]

Bronnen, noten en/of referenties
  1. Stralen zonder schade! Inspecties industriële radiografie 14. Ministerie van Volkshuisvesting, Ruimtelijke Ordening en Milieubeheer (18 september 2009) Geraadpleegd op 23 maart 2011
  2. Gezondheidsraad. Gezondheidsrisico's van blootstelling aan verarmd uranium. Een overzicht. Den Haag: Gezondheidsraad, 2001; publicatie nr 2001/13. ISBN 90-5549-376-7
Zoek dit woord op in WikiWoordenboek