Chloroplast

Celbiologie |
---|
Opbouw van een chloroplast |
![]() |
Componenten van een chloroplast:
|
Portaal ![]() |
Chloroplasten of bladgroenkorrels zijn groene plastiden in de cellen van veel soorten planten, algen en bepaalde micro-organismen, waarbinnen fotosynthese (koolstof-assimilatie) plaatsvindt. Gespecialiseerde moleculaire complexen in chloroplasten vangen energie uit zonlicht op. Met de zonne-energie worden, uit water en koolstofdioxide, de chemische, covalente bindingen gevormd tussen de koolstof-, waterstof-, en zuurstofatomen die samen een glucosemolecuul vormen: de zonne-energie wordt omgezet in chemische energie. De chemische energie komt weer vrij tijdens de celademhaling, de verbranding van glucose in de cellen van de plant, alg of micro-organisme. Chloroplasten zijn daarnaast ook betrokken bij diverse andere ('voortgezette') assimilatieprocessen, waaronder de synthese, vanuit de gevormde glucose, van moleculen als vetzuren en aminozuren. Organismen die met behulp van energie uit zonlicht hun eigen biomoleculen, en daarmee vervolgens hun cellen en weefsels opbouwen, zijn foto-autotroof. De ontwikkeling en instandhouding van het leven op aarde kan, via verschillende voedselketens, rechtstreeks gerelateerd worden aan de biochemische processen die zich in chloroplasten voltrekken.
Chloroplasten komen voor in een grote verscheidenheid aan organismen. Vrijwel alle planten- en algencellen, en ook eencellige organismen zoals protisten, bezitten enkele tot honderden chloroplasten.
Fotosynthese[bewerken | brontekst bewerken]
Tijdens de fotosynthese in de chloroplasten wordt zonlicht opgevangen en verwerkt. In de thylakoïde, een membraan-omsloten compartiment in de chloroplast, vindt de eigenlijke fotosynthese plaats. Daarbij worden water en koolstofdioxide omgezet in glucose. De fotosynthese wordt verdeeld in twee processen; de lichtreactie in de membranen van de thylakoïden; en in het stroma de Calvincyclus of donkerreactie. In de lichtreactie wordt water gesplitst in zuurstof en waterstof, en in de donkerreactie vindt er koolstoffixatie plaats, waarbij CO2 wordt vastgelegd in glyceraldehyde-3-fosfaat (G3P of GAP). Uit twee moleculen G3P kan vervolgens glucose worden gevormd.
De vloeistof die de rest van de chloroplast opvult heet stroma. Daarnaast zitten er nog zetmeelkorrels in de chloroplast. Bij hauwmossen en bij sommige algen is er in de plastide een pyrenoïde zichtbaar: een ophoping van het parakristallijne rubisco, het belangrijkste enzym voor de fotosynthese.
Chloroplasten geven een plant zijn groene kleur. Deze groene kleur is toe te schrijven aan de sterke absorptie van het rode en blauwe deel van het spectrum: alleen de groene kleur wordt teruggekaatst.
Endosymbiontentheorie[bewerken | brontekst bewerken]
De endosymbiontentheorie is de theorie die de herkomst van de mitochondria en chloroplasten in eukaryote cellen verklaart vanuit endosymbiose. Er zijn sterke aanwijzingen dat chloroplasten zich hebben ontwikkeld vanuit foto-autotrofe, eencellige blauwwieren, vergelijkbaar met de evolutie van mitochondria. Deze bacteriën zijn gedurende de evolutie waarschijnlijk een endosymbiose aangegaan met eencellige eukaryoten.
| |||||||||
verklaring:
| |||||||||
---|---|---|---|---|---|---|---|---|---|
| |||||||||
verlies van plastide: plastiden in de loop van de evolutie verloren gegaan | |||||||||
I +blauwwier: primaire endosymbiose met blauwwier II + groenwier: secundaire endosymbiose met groenwier II + roodwier: secundaire endosymbiose met roodwier |
→ I: betrokken bij primaire endosymbiose → II: betrokken bij secundaire endosymbiose → III: betrokken bij tertiaire endosymbiose |
Zo lijkt het genoom van plastiden, zoals chloroplasten, meer op dat van een blauwwier dan op dat van een eukaryoot. Het DNA van een plastide heeft namelijk een ringvormige structuur en bevat geen histonen.
Een andere overeenkomst is dat mitochondria en plastiden in de cel zich vermenigvuldigen door binaire deling, net zoals bacteriën dat doen.
Een ander voorbeeld van endosymbiose vormt de eencellige Hatena arenicola en de zeeslak Elysia chlorotica. Deze nemen chloroplasten op uit algen in zijn cellen en gebruikt deze voor fotosynthese. Elysia chlorotica geeft de chloroplasten ook door aan het nageslacht. Hatena arenicola geeft de chloroplast bij celdeling slechts aan één dochtercel door.
Ontwikkeling[bewerken | brontekst bewerken]
Onder invloed van het licht ontstaat een bladgroenkorrel uit een proplastide:
- A: De proplastide van een plant in het donker bestaat alleen maar uit een binnen- en buitenmembraan en erfelijk materiaal.
- B: Onder invloed van het licht begint de aanmaak van chlorofyl, fosfolipiden en thylakoïde-proteïnen. Van het binnenmembraan snoeren zich naar binnen toe blaasjes (vesikels) af.
- C: Tijdens het groter worden van de proplastide worden door samensmelting van de blaasjes thylakoïden gevormd. Een proteïne zorgt voor de stapeling van de thylakoïden in grana.
- D: Door de ontwikkeling van de membraansystemen, waarbij de grana met elkaar verbonden worden door lamellen bestaande uit (ongestapelde) stroma-thylakoïden, ontstaat uiteindelijk de chloroplast.
Celorganellen van eukaryoten | ||||||
---|---|---|---|---|---|---|
|